政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/37099
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114409/145439 (79%)
Visitors : 53226960      Online Users : 577
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/37099


    Title: 一個有關開票的問題
    About A Ballot Problem
    Authors: 楊蘭芬
    Contributors: 李陽明
    楊蘭芬
    Keywords: 好路徑
    一路領先
    a good path
    leading all the way
    Date: 2008
    Issue Date: 2009-09-19 12:08:46 (UTC+8)
    Abstract: 本篇論文主要在討論兩個人參選時的開票情況,研究「n+m人投票且無人投廢票的情況下,其中一人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數」 ,第一章介紹研究動機及他人所使用的方式,使用路徑的方法證明一人得n票,另一人得m票,n≥m,得n票的人一路領先且勝出的方法數等於 C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n),再用計算相消的方式算出,此人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數。
    第二章介紹用一個折路徑的方法,將所有「一人得n票開票方法數」中非一路領先的路徑圖,經由一個壓扁、翻轉的摺紙方式,對應到「此人至少得n票且一路領先」的開票情況路徑圖,經由數學論證,這樣的路徑,是一對一且映成,並舉出兩個例子驗證其結果。
    論文最後,提出一個猜想:若參選人數為三人時,其中一位參選人一路領先且勝出的開票方法數,應該可以用立體空間的方塊圖之路徑來證明。本篇論文,雖然沒有繼續討論這個有趣的問題,但也留下一個新的研究方向。
    The theme of this thesis is mainly to discuss of situation of counting and announcing the ballots in an election with two candidates. In explaining the contents of the "Total n+m votes, there’s no invalid vote. One candidate wins at least n votes and lead all the way. Under this circumstance this number of the way will be equal to all numbers of the way for these n votes of this candidate.” At first, we will introduce the methodology of the other adopt, the methodology of previous path of way proves one candidate known to have n votes, another candidate has m votes, the method of candidate with n votes who leads all the way and won will be equal to C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n), and then result of calculating cancellation will prove this candidate will have at last n votes and leads the way to victory will be equal to all the methodologies of counting and announcing the ballots in this election.
    A method of flip the path will be introduced in the second chapter.
    Corresponding to the road map of ballot counting for the candidate who has n votes and lead the way to victory, the road map of same one with n votes without leading the way through a step-ping, flip the way of origami will be mathematically proves such reflect of the way will be reflect one to one and onto. By means of the discrete method is able to prove this result and the method to verify availability
    Finally, I would like to propose a surmise: If the number of candidates increased to 3, the methodology of the one who leads all the way should be able to use three-dimensional space of a block diagram of the path to prove. Although this thesis does not to continue pondering the interesting question, but also left a new research direction.
    Reference: [1] John H. Conway and Richard Guy, The Book of Numbers. New York: Copernicus, 1996.
    [2] Tom Davis. Catalan Numbers.http://www.geometer.org/mathcircles .November 26, 2006.
    [3] Catalan Eugene. (1844): Note extraite d’une lettre adress´ee,J. Reine Angew. Math., 27 :192.
    [4] Martin Gardner (1988), Time Travel and Other Mathematical Bewilderments, New York: W.H. Freeman and Company.
    [5] Richard P. Stanley (1999), Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, http://www-math.mit.edu/~rstan/ec/ .
    [6] Alan Tucker. Applied Combinatorics. New York: John Wiley & Sons,Inc,1995.
    [7] http://cplee8tcfsh.blogspot.com/2007/02/blog-post_8619.html
    Description: 碩士
    國立政治大學
    應用數學研究所
    95972012
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095972012
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File Description SizeFormat
    201201.pdf92KbAdobe PDF2903View/Open
    201202.pdf162KbAdobe PDF2987View/Open
    201203.pdf236KbAdobe PDF21046View/Open
    201204.pdf323KbAdobe PDF21340View/Open
    201205.pdf813KbAdobe PDF21070View/Open
    201206.pdf127KbAdobe PDF21199View/Open
    201207.pdf121KbAdobe PDF21052View/Open
    201208.pdf277KbAdobe PDF21019View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback