政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/36929
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113648/144635 (79%)
造訪人次 : 51679783      線上人數 : 584
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36929
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/36929


    題名: 兩種正則化方法用於假設檢定與判別分析時之比較
    A comparison between two regularization methods for discriminant analysis and hypothesis testing
    作者: 李登曜
    Li, Deng-Yao
    貢獻者: 黃子銘
    Huang, Tzee-Ming
    李登曜
    Li, Deng-Yao
    關鍵詞: 脊迴歸
    正則化
    交叉驗證
    排列檢定
    概似比檢定
    判別分析
    Ridge regression
    Regularization
    Cross-validation
    Permutation test
    Likelihood ration test
    Discriminant analysis
    日期: 2008
    上傳時間: 2009-09-18 20:10:59 (UTC+8)
    摘要: 在統計學上,高維度常造成許多分析上的問題,如進行多變量迴歸的假設檢定時,當樣本個數小於樣本維度時,其樣本共變異數矩陣之反矩陣不存在,使得檢定無法進行,本文研究動機即為在進行兩群多維常態母體的平均數檢定時,所遇到的高維度問題,並引發在分類上的研究,試圖尋找解決方法。本文研究目的為在兩種不同的正則化方法中,比較何者在檢定與分類上表現較佳。本文研究方法為以 Warton 與 Friedman 的正則化方法來分別進行檢定與分類上的分析,根據其檢定力與分類錯誤的表現來判斷何者較佳。由分析結果可知,兩種正則化方法並沒有絕對的優劣,須視母體各項假設而定。
    High dimensionality causes many problems in statistical analysis. For instance, consider the testing of hypotheses about multivariate regression models. Suppose that the dimension of the multivariate response is larger than the number of observations, then the sample covariance matrix is not invertible. Since the inverse of the sample covariance matrix is often needed when computing the usual likelihood ratio test statistic (under normality), the matrix singularity makes it difficult to implement the test . The singularity of the sample covariance matrix is also a problem in classification when the linear discriminant analysis (LDA) or the quadratic discriminant analysis (QDA) is used.

    Different regularization methods have been proposed to deal with the singularity of the sample covariance matrix for different purposes. Warton (2008) proposed a regularization procedure for testing, and Friedman (1989) proposed a regularization procedure for classification. Is it true that Warton`s regularization works better for testing and Friedman`s regularization works better for classification? To answer this question, some simulation studies are conducted and the results are presented in this thesis.
    It is found that neither regularization method is superior to the other.
    參考文獻: [1] M.J. Daniels and R.E. Kass. Shrinkage estimators for covariance matrices. Biometrics, 57(4):1173-1184,2001.
    [2] J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association, 84(405):165-175,1989.
    [3] J.P. Hoffbeck and D.A, Landgrebe. Covariance matrix estimator and classification with limited training data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7):763-767, 1996.
    [4] W.J. Krzanowski, P. Jonathan, W.V. McCarthy, and M.R. Thomas. Discriminant analysis with singular matrices:method and applications to spectroscopic data. Applied Statistics, 44(1):101-115, 1995.
    [5] D.M. Titterington. Common structure of smoothing techniques in statistics. International Statistical Review, 53(2):141-170, 1985.
    [6] D.I. Warton. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. Journal of the American Statistical Association, 103(481):340-349, 2008.
    描述: 碩士
    國立政治大學
    統計研究所
    96354019
    97
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0096354019
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    401901.pdf166KbAdobe PDF2846檢視/開啟
    401902.pdf519KbAdobe PDF2944檢視/開啟
    401903.pdf509KbAdobe PDF2847檢視/開啟
    401904.pdf431KbAdobe PDF2825檢視/開啟
    401905.pdf595KbAdobe PDF2958檢視/開啟
    401906.pdf669KbAdobe PDF2866檢視/開啟
    401907.pdf694KbAdobe PDF2890檢視/開啟
    401908.pdf1155KbAdobe PDF2948檢視/開啟
    401909.pdf553KbAdobe PDF2807檢視/開啟
    401910.pdf125KbAdobe PDF2827檢視/開啟
    401911.pdf511KbAdobe PDF2873檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋