English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51667002      Online Users : 674
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36929
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36929


    Title: 兩種正則化方法用於假設檢定與判別分析時之比較
    A comparison between two regularization methods for discriminant analysis and hypothesis testing
    Authors: 李登曜
    Li, Deng-Yao
    Contributors: 黃子銘
    Huang, Tzee-Ming
    李登曜
    Li, Deng-Yao
    Keywords: 脊迴歸
    正則化
    交叉驗證
    排列檢定
    概似比檢定
    判別分析
    Ridge regression
    Regularization
    Cross-validation
    Permutation test
    Likelihood ration test
    Discriminant analysis
    Date: 2008
    Issue Date: 2009-09-18 20:10:59 (UTC+8)
    Abstract: 在統計學上,高維度常造成許多分析上的問題,如進行多變量迴歸的假設檢定時,當樣本個數小於樣本維度時,其樣本共變異數矩陣之反矩陣不存在,使得檢定無法進行,本文研究動機即為在進行兩群多維常態母體的平均數檢定時,所遇到的高維度問題,並引發在分類上的研究,試圖尋找解決方法。本文研究目的為在兩種不同的正則化方法中,比較何者在檢定與分類上表現較佳。本文研究方法為以 Warton 與 Friedman 的正則化方法來分別進行檢定與分類上的分析,根據其檢定力與分類錯誤的表現來判斷何者較佳。由分析結果可知,兩種正則化方法並沒有絕對的優劣,須視母體各項假設而定。
    High dimensionality causes many problems in statistical analysis. For instance, consider the testing of hypotheses about multivariate regression models. Suppose that the dimension of the multivariate response is larger than the number of observations, then the sample covariance matrix is not invertible. Since the inverse of the sample covariance matrix is often needed when computing the usual likelihood ratio test statistic (under normality), the matrix singularity makes it difficult to implement the test . The singularity of the sample covariance matrix is also a problem in classification when the linear discriminant analysis (LDA) or the quadratic discriminant analysis (QDA) is used.

    Different regularization methods have been proposed to deal with the singularity of the sample covariance matrix for different purposes. Warton (2008) proposed a regularization procedure for testing, and Friedman (1989) proposed a regularization procedure for classification. Is it true that Warton`s regularization works better for testing and Friedman`s regularization works better for classification? To answer this question, some simulation studies are conducted and the results are presented in this thesis.
    It is found that neither regularization method is superior to the other.
    Reference: [1] M.J. Daniels and R.E. Kass. Shrinkage estimators for covariance matrices. Biometrics, 57(4):1173-1184,2001.
    [2] J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association, 84(405):165-175,1989.
    [3] J.P. Hoffbeck and D.A, Landgrebe. Covariance matrix estimator and classification with limited training data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7):763-767, 1996.
    [4] W.J. Krzanowski, P. Jonathan, W.V. McCarthy, and M.R. Thomas. Discriminant analysis with singular matrices:method and applications to spectroscopic data. Applied Statistics, 44(1):101-115, 1995.
    [5] D.M. Titterington. Common structure of smoothing techniques in statistics. International Statistical Review, 53(2):141-170, 1985.
    [6] D.I. Warton. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. Journal of the American Statistical Association, 103(481):340-349, 2008.
    Description: 碩士
    國立政治大學
    統計研究所
    96354019
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096354019
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401901.pdf166KbAdobe PDF2846View/Open
    401902.pdf519KbAdobe PDF2944View/Open
    401903.pdf509KbAdobe PDF2847View/Open
    401904.pdf431KbAdobe PDF2825View/Open
    401905.pdf595KbAdobe PDF2958View/Open
    401906.pdf669KbAdobe PDF2866View/Open
    401907.pdf694KbAdobe PDF2890View/Open
    401908.pdf1155KbAdobe PDF2948View/Open
    401909.pdf553KbAdobe PDF2807View/Open
    401910.pdf125KbAdobe PDF2827View/Open
    401911.pdf511KbAdobe PDF2873View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback