English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113869/144892 (79%)
Visitors : 51892454      Online Users : 550
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/36719
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36719


    Title: 可轉換公司債存續期間之分析
    Anatomy of the convertible bond duration
    Authors: 陳嘉霖
    Cheb, Chia-Lin
    Contributors: 陳松男
    Chen, Son-Nan
    陳嘉霖
    Cheb, Chia-Lin
    Keywords: 可轉換公司債
    存續期間
    有效存續期間
    六元樹
    Hull-White利率模型
    Convertible bond
    Duration
    Effective duration
    Hexanomial tree
    Hull and white interest rate model
    Date: 2001
    Issue Date: 2009-09-18 19:21:51 (UTC+8)
    Abstract: 論文名稱:可轉換公司債存續期間之分析
    校所組別:國立政治大學金融研究所
    畢業時間:九十年度第二學期
    提要別:碩士學位論文提要
    研究生:陳嘉霖
    指導教授:陳松男博士
    論文提要及內容:
    本研究在分析可轉債的存續期間,在存續期間的衡量上是採用有效存續期間法;而在可轉換公司債的評價上,假設股票價格服從幾何布朗寧運動,無風險利率的變動符合Hu1I-white利率模型,並且考量利率與股票報酬之間的相關性,建立可轉換公司債評價六元樹形圖。
    本研究分別針對到期期限長短、價內外程度、股價波動度、利率波動度、股價與利率相關係數及票面利率等六項參數,作可轉換公司債存續期間的敏感度分析,研究結果為:1 加入贖回條款後,可轉債的存續期間高於未加任何條款下的可轉債存續期間。2 加入賣回條款後,可轉債的存續期間低於未加任何條款下的可轉債存續期間。3 加入贖回及賣回候款後,可轉債的存續期間會介於僅含贖回條款與僅含賣回條款的存續期間之中。4 距到期日愈長可轉債的存續期間愈高。5 愈價外的可轉債其存續期間愈高。6 股票波動度愈高,可轉債的存續期間愈低。7 利率波動度增加則可轉債的存續期間上升。8 股票價格與利率相關係數由正至負,可轉債的存續期間上升。9 若贖回權愈小,則票息上升會增加可轉債的存續期間。
    關鍵字:可轉換公司債、存續期間、有效存續期間、六元樹、Hull-white、利率模型
    Title of Thesis: Anatomy of the Convertible Bond Duration
    Name of Institute: Graduate Institute of Money and Banking, NCCU
    Graduate Date: June, 2002
    Name of Student: Chen, Chia-Lin
    Advisor: Dr. Chen, Son-Nan
    Abstract:
    This thesis uses effective duration method to anatomize the convertible bond duration. With the assumptions that stock price follows Geometric Brownian Motion and risk-free interest rate follows Hull and White model, we built a hexanomial tree to value the convertible bond.
    This thesis analyses the effects of the six parameters . They are maturity date, the ratio of the stock price versus the strike price, the correlation between stock return and interest rate, stock return volatility, interest rate volatility, and coupons. The conclusions include nine points. First, the value of convertible bond duration including call clauses is higher then pure convertible bond duration. Second, the value of convertible bond duration including put clauses is lower than pure convertible bond duration. Third, the value of convertible bond duration including both call and put clauses is between only including call or put clauses ones. Fourth, the longer the time to maturity is, the higher the convertible bond duration is. Fifth, the higher the ratio of the strike price versus the stock price is , the higher the convertible bond duration is. Sixth, the higher the stock volatility is , the lower the convertible bond duration is. Seventh, the higher the interest rate volatility is , the higher the convertible bond duration is. Eighth, the value of the correlation between stock return and interest rate increases from a negative value to a positive one, then the convertible bond duration increases. Ninth, if the value of call right is very small , the convertible bond duration will increase by the increasing of the coupon .
    Keywords: Convertible Bond, Duration, Effective Duration, Hexanomial Tree, Hull and White Interest Rate Model
    Description: 碩士
    國立政治大學
    金融研究所
    89352004
    90
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G91NCCU2832012
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2318View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback