政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/33889
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51907598      Online Users : 82
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/33889


    Title: 空氣污染與健康關係的兩階段時空模型分析
    Two-Phase Spatiotemporal Models for Air Pollution and Health
    Authors: 溫有汶
    Wen , Yu-Wen
    Contributors: 黃景祥
    鄭宗記

    Hwang , Jing-Shiang
    Cheng , Tsung-Chi

    溫有汶
    Wen , Yu-Wen
    Keywords: 空氣污染
    兩階段時空模型
    小區域分析
    逐時段時空模型
    Air pollution
    Two-phase spatiotemporal models
    Small-area analysis
    Spatiotemporal analysis by time
    Date: 2003
    Issue Date: 2009-09-17 18:44:15 (UTC+8)
    Abstract: 本研究提出一個兩階段的時空模型來分析空氣污染與健康的關係。我們選取在台灣的49個有設置空氣品質監測站的鄉鎮市區做為研究地區。資料包含這些小地區中1997-2001年的各地區每日因呼吸道疾病而就醫的門診人數與空氣污染物濃度與氣象監測資料。在第一階段中,對每一個月所有地區的每日因呼吸道疾病而就醫的門診人數與空氣污染配適時空模型,並利用氣象條件等因素做調整。在第二階段裡,利用線性混合效果模型將第一階段所獲得的60 個月空氣污染物係數估計值來獲得代表這五年全國整體污染物係數的估計。本文利用模擬研究來探討當季節因素與不可解釋的因素,例如像流行性感冒等存在時會對文獻上其他時空模型中參數的估計所造成的影響,同時與我們所提出的方法作一比較。
    We proposed a spatiotemporal model to investigate the association between the acute health effects and daily numbers of clinic visits for respiratory illness. The data include clinic records due to respiratory illness and environmental variables from air quality monitoring stations in Taiwan during 1997-2001. A small-area design and two-phase modeling were used for the analysis. In the first phase, we constructed a Poisson regression with autogressive residual process and spatial correlation to obtain the pollution coefficient of each single month. In the second phase, we combined the information from phase one model to improve estimates of the pollution coefficients of each month and to obtain an overall pollution coefficient across the temporal course. Simulation study was used to illustrate the bias of estimation when there are seasonal, spatial and the unexplained effects in the data.
    Reference: 1. Atkinson, R. W., Anderson, H. R., Sunyer, J., Ayres, J., Baccini, M., Vonk, J. M., Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G., Schwartz, J. and Katsouyanni, k. (2003), “Acute Effects of Particulate Air Pollution on Respiratory Admissions,” Special Report, Preprint Version. Health Effects Institutes, Cambridge MA.
    2. Burnett, R. T., Dales, R. E., Raizenne, M.E., Krewski, D., Summers, P. W., Roberts, G. R., Raadyoung, M., Dann, T. and Brook, J. (1994), “Effects of Low ambient Levels of Ozone and Sulfates on the Frequency of Respiratory Admissions to Ontario Hospital,” Environmental Research, Vol. 65, Issue 2,172-194.
    3. Burnett, R. T. and Goldberg, M. S. (2003), “Size-Fractionated Particulate Mass and Daily Mortality in Eight Canadian Cities,” Special Report, Preprint Version. Health Effects Institutes, Cambridge MA.
    4. Chib, S. and Greenberg, E. (1995), “Understanding the Metropolis-Hasting Algorithm,” American Statistical Association, Vol. 49, No. 4, 327-335.
    5. Congdon. P. (1994), “Spatiotemporal Analysis of Area Mortality,” The Statistician, Vol. 43, No. 4, 513-528.
    6. Coull, B. A., Schwartz, J. and Wand, M. P. (2001), “Respiratory Health and Air Pollution: Additive Mixed Model Analyses,” Biostatistics, Vol. 2, No. 3, 337-349.
    7. Cressie, N. A. (1993), Statistics for Spatial Data, New York: John Wiley & Sons.
    8. Carlin, B. P. and Louis, T. A. (2000), Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed., London: Chapman and Hall.
    9. Dey, D. K., Ghosh, S. K. and Mallick, B. K., (2000), Generalized Linear Models: A Bayesian Perspective, New York: Marcel Dekker.
    10. Dominici, F., Samet, S. M. and Zeger, S. L. (2000), “Combining Evidence on Air Pollution and Daily Mortality from the 20 Largest US Cities: a Hierarchical Modeling Strategy,” Journal of the Royal Statistical Society, Series A, Vol. 163, No.3, 263-302.
    11. Dominici, F., McDermott, A., Zeger, S. L. and Samet, J. M. (2002a), “On the Use of Generalized Additive Models in Time-Series Studies of Air Pollution and Health,” American Journal of Epidemiology, Vol. 156, No. 3, 193-203.
    12. Dominici, F., Daniels, M., Zeger, S. L and Samet, J. M. (2002b), “Air Pollution and Mortality: Estimating Regional and National Dose-Response Relationships,” Journal of the American Statistical Association, Vol. 97, No. 457, 100-111.
    13. Dominici, F., McDermott, A., Zeger, S. L. and Samet, J. M. (2003), “Airborne Particulate Matter and Mortality: Timescale Effects in for US Cities,” American Journal of Epidemiology, Vol. 57, No. 12, 1055-1065.
    14. Dominici, F., McDermott, A., Hastie, T. (2003), “Improved Semipararmeteric Time Series Models for Air Pollution and Mortality,” Technical Report.
    15. Elliott, P., Wakefield, J. C., Best, N. G. and Briggs, D. J. (2000), Spatial Epidemiology: Methods and Applications, Oxford: Oxford University Press.
    16. Fairley, D. (20003), “Mortality and Air Pollution for Santa Clara County California, 1989-1996,” Special Report, Preprint Version. Health Effects Institutes, Cambridge MA.
    17. Gamermam, D. (1997), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, London: Chapman and Hall.
    18. Gelfand, A. E. and Smith, A. F. M. (1990), “Sampling-Based Approaches to Calculating Marginal Densities,” Journal of the American Statistical Association, Vol. 85, No. 410, 398-409.
    19. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995), Bayesian Data Analysis, London: Chapman and Hall.
    20. Gelman, A. and Rubin, D. B. (1992), “Inference from Iterative Simulation Using Multiple Sequences,” Statistical Science, Vol. 7, No. 4, 457-511.
    21. Gilks, W. E., Richardson, S. and Spiegelhalter D. J. (1996), Markov Chain Monte Carlo in Practice, London: Chapman and Hall.
    22. Gold, D. R., Schwartz, J., Litonjua, A., Verrier, R., and Zanobetti, A. (2003), “Ambient Pollution and Reduced Heart Rate Variability,” Special Report, Preprint Version. Health Effects Institutes, Cambridge MA.
    23. GoldBerg, M. A. and Burnett, R. T. (2003), “Revised Analysis of the Montreal Time-Series Study,” Special Report, Preprint Version. Health Effects Institutes, Cambridge MA.
    24. Hajat, S., Haines, A., Atkinson, R. W., Bremner, S. A., Anderson, H. R. and Emberlin, J. (2001), “Association between Air Pollution and Daily Consultations with General Practitioners for Allergic Rhinitis in London, United Kingdom,” American Journal of Epidemiology, Vol. 153, No. 7, 704-714.
    25. Hastie, T. J. and Tibshirani, R. J. (1986), “Generalized Additive Models,” Statistical Science, Vol. 1, No. 3, 297-318.
    26. Hastie, T. J. and Tibshirani, R. J. (1990), Generalized Additive Models, London: Chapman and Hall.
    27. Hwang, J.-S., Chen, Y.-J., Wang, J.-D., Lai, Y.-M., Yang, C.-Y. and Chan, C.-C. (2000), “Subject-Domain Approach to the Study of Air Pollution Effects in Schoolchildren’s Illness Absence,” American Journal of Epidemiology, Vol. 152, No. 1, 67-74.
    28. Hwang, J.-S. and Chan, C.-C. (2002), “Effects of Air Pollution on Daily Clinic Visits for Lower Respiratory Tract Illness,” American Journal of Epidemiology, Vol. 155, No. 1, 1-10.
    29. Hwang, J.-S., Hu, T. H. and Chan, C. C. (2004), “Air Pollution Mix and Emergency Room Visits for Respiratory and Cardiac Diseases in Taipei,” Journal of Data Science, Vol. 24, No. 4. (in press).
    30. Jorgensen, B., Christensen, S. L., Song, X.-K. and Sun, Li. (1996), “A Longitudinal of Emergency Room Visits and Air Pollution for Prince George, British Columbia,” Statistics in Medicine, Vol. 15, 823-836.
    31. Knorr-Held, L. (1999), “Bayesian Modeling of Inseparable Space-Time Variation in Disease Risk,” Technical Report.
    32. Korn, E. L. and Whittemore, A. S. (1979), “Methods for Analyzing Panel Studies of Acute Health Effects of Air Pollution,” Biometrics, Vol. 35, 795-802.
    33. Lawson, A. B. (1994), “Using Spatial Gaussian Priors to Model Heterogeneity in Environment Epidemiology,” The Statistician, Vol. 43, No. 1, 69-76.
    34. Lin, M., Chen, Y., Villeneuve, P. J., Burnett, R. T., Lemyre, L., Hertzman, C., McGrail, K. M. and Krewski, D. (2004), “Gaseous Air Pollutants and Asthma Hospitalization of Children with Low Household Income in Vancouver, British Columbia, Canada,” American Journal of Epidemiology, Vol. 159, No. 3, 294-303.
    35. McCulloch, C. E. and Searle, S. R. (2001), Generalized, Linear, and Mixed Models, New York: John Wiley and Sons, Inc.
    36. McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd ed., London: Chapman and Hall.
    37. McNeny, B. and Petkau, J. (1994), “Overdispersed Poisson Regression Models for Studies of Air Pollution and Human Health,” The Canadian Journal of Statistics, Vol. 22, No. 4, 421-440.
    38. Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, New York: Spring-Verlag.
    39. Press, S. J. (2003), Subjective and Objective Bayesian Statistics, 2nd ed., New York: John Wiley and Sons, Inc.
    40. Tanner, M. A. (1996), Tools for Statistical Inference, 3rd ed., New York: Spring-Verlag.
    41. Zidek, J. V., White, R., Le, N. D., Sun, W. and Burnett, R. T. (1998), “Imputing Unmeasured Explanatory Variables in Environmental Epidemiology with Application to Health Impact Analysis of Air Pollution,” Environmental and Ecological Statistics, Vol. 5, 99-115.
    Description: 博士
    國立政治大學
    統計研究所
    88354502
    92
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0088354502
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    35450201.pdf74KbAdobe PDF2809View/Open
    35450202.pdf84KbAdobe PDF2796View/Open
    35450203.pdf101KbAdobe PDF2768View/Open
    35450204.pdf94KbAdobe PDF2847View/Open
    35450205.pdf237KbAdobe PDF22365View/Open
    35450206.pdf683KbAdobe PDF21434View/Open
    35450207.pdf146KbAdobe PDF21000View/Open
    35450208.pdf157KbAdobe PDF21007View/Open
    35450209.pdf147KbAdobe PDF2847View/Open
    35450210.pdf183KbAdobe PDF21229View/Open
    35450211.pdf74KbAdobe PDF2742View/Open
    35450212.pdf347KbAdobe PDF2734View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback