Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/32586
|
Title: | 半純函數與其導數之值分佈 On The Value Distribution Of Meromorphic Functions With Their Derivatives |
Authors: | 歐姿君 Ou, Tze Chun |
Contributors: | 陳天進 Chen, Ten Ging 歐姿君 Ou, Tze Chun |
Keywords: | 值分佈理論 半純函數 value distribution theory meromorphic function |
Date: | 2007 |
Issue Date: | 2009-09-17 13:48:01 (UTC+8) |
Abstract: | Haymen猜測:對任意的超越半純函數 f(z),f`(z)f(z)^n 取所有值無窮多次,其中至多只有一個例外值。這個著名的猜測,大部分的情形已被證明是正確的。另外,Hayman 證明 f`(z)-af(z)^n 取所有有限值無窮多次 ,其中 a 為一複數且 n≧5 的正整數。在本篇論文裡,我們將探討以小函數為係數的半純函數微分多項式之值分佈問題。並將Hayman的結果推廣至 f^{k}(z)f(z)^n 與 f^{k}(z)-af(z)^n 的情形。同時,我們也證明一些 A類半純函數與其導數的值分佈結果。 A famous conjecture of Hayman says that if f(z) is a transcendental meromorphic function, then f`(z)f(z)^n assumes all finite values except possibly zero infinitely often. The conjecture was solved in most cases. Another result of Hayman says that f`(z)-af(z)^n, where n≧5 and a is a complex number, assumes all finite values infinitely often. In this thesis, we will study the value distribution of some differential polynomial in a meromorphic function with small functions as coefficents. In fact, we will generalize Hayman`s results to the cases f^(k)(z)f(z)^n and f^(k)(z)-af(z)^n. Also, the value distribution of meromorphic functions of class A with their derivatives are obtained. |
Reference: | [1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iber., 11 (1995), 355-373. [2] H. H. Chen and M. L. Fang, On the value distribution of fnf0, Sci. China Ser. A, 38 (1995), 789-798. [3] J. Clunie, On integral and meromorphic function, J. London Math. Soc., 37 (1962), 17-27. [4] J. Clunie, On a result of Hayman, J. London Math. Soc., 42 (1967), 389-392. [5] P. Csillag, ¨ Uber ganze funktionen, welche drei nicht verschwindende ableitungen besitzen, Math. Ann., 110 (1935), 745-752. [6] G. Frank, Eine vermutung von Hayman ¨uber nullstellen meromorpher funktion, Math. Z., 149 (1976), 29-36. [7] G. Frank, W. Hennekemper and G. Polloczek, ¨ Uber die nullstellen meromorpher funktionen und deren ableitungen, Math. Ann., no.2 225 (1977), 145-154. [8] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9-42. [9] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. [10] W. K. Hayman, Reseach Problems in Function Theory, London: Athlone Press, 1967. [11] J. K. Langley, Proof of a conjecture of Hayman concerning f and f00, J. London Math. Soc., no.2 48 (1993), 500-514. [12] E. Mues, ¨ Uber ein problem von Hayman, Math. Z., 164 (1979), 239-259. [13] E. Mues, Meromorphic functions sharing four values, Complex Variables, 12 (1989), 169–179. [14] W. Saxer, Sur les valeurs exceptionelles des d´eriv´ees successives des fonctions meromorphes, C. R. Acad. Sci. Paris, 182 (1926), 831-833. [15] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003. [16] C. C. Yang and C. T. Chuang, Fixed points and factorization theory of meromorphic functions, Peking Univ. Press, 1988. [17] L. Zalcman, On some problems of Hayman, preprint (Bar-Ilan University). [18] L. Yang, Value distribution theory, Berlin Heidelberg: Springer-Verlag, Beijing: Science Press, 1993. [19] F. Gross, Factorizatioin of meromorphic functions, U. S. Government Printing Office, Washington, D. C.,1972. [20] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Pure and Applied Math. Monographs No. 32, Science Press, Beijing, 1995. [21] R. Nevanlinna, Le th´eor"eme de Picard-Borel et la th´eorie des fonctions m´eromorphes, Gauthiers-Villars, Paris, 1929. [22] H. Milloux, Les fonctions m´eromorphes et leurs d´eriv´ees, Paris, 1940. [23] K. Y. Chen, Some Results on the Uniqueness of Meromorphic Functions, PHD thesis, National Chengchi University, 2007. |
Description: | 碩士 國立政治大學 應用數學研究所 94751008 96 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0094751008 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|