政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32586
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52056752      在线人数 : 749
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32586


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/32586


    题名: 半純函數與其導數之值分佈
    On The Value Distribution Of Meromorphic Functions With Their Derivatives
    作者: 歐姿君
    Ou, Tze Chun
    贡献者: 陳天進
    Chen, Ten Ging
    歐姿君
    Ou, Tze Chun
    关键词: 值分佈理論
    半純函數
    value distribution theory
    meromorphic function
    日期: 2007
    上传时间: 2009-09-17 13:48:01 (UTC+8)
    摘要: Haymen猜測:對任意的超越半純函數 f(z),f`(z)f(z)^n 取所有值無窮多次,其中至多只有一個例外值。這個著名的猜測,大部分的情形已被證明是正確的。另外,Hayman 證明 f`(z)-af(z)^n 取所有有限值無窮多次
    ,其中 a 為一複數且 n≧5 的正整數。在本篇論文裡,我們將探討以小函數為係數的半純函數微分多項式之值分佈問題。並將Hayman的結果推廣至 f^{k}(z)f(z)^n 與 f^{k}(z)-af(z)^n 的情形。同時,我們也證明一些
    A類半純函數與其導數的值分佈結果。
    A famous conjecture of Hayman says that if f(z) is a transcendental meromorphic function, then f`(z)f(z)^n assumes all finite values except possibly zero infinitely often. The conjecture was solved in most cases. Another result of Hayman says that f`(z)-af(z)^n, where n≧5 and a is a complex number, assumes all finite values infinitely often. In this thesis, we will study the value distribution of some differential polynomial in a meromorphic function with small functions as coefficents. In fact, we will generalize Hayman`s results to the cases f^(k)(z)f(z)^n and f^(k)(z)-af(z)^n. Also, the value distribution of meromorphic functions of class A with their derivatives are obtained.
    參考文獻: [1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic
    function of finite order, Rev. Mat. Iber., 11 (1995), 355-373.
    [2] H. H. Chen and M. L. Fang, On the value distribution of fnf0, Sci. China Ser.
    A, 38 (1995), 789-798.
    [3] J. Clunie, On integral and meromorphic function, J. London Math. Soc., 37
    (1962), 17-27.
    [4] J. Clunie, On a result of Hayman, J. London Math. Soc., 42 (1967), 389-392.
    [5] P. Csillag, ¨ Uber ganze funktionen, welche drei nicht verschwindende ableitungen
    besitzen, Math. Ann., 110 (1935), 745-752.
    [6] G. Frank, Eine vermutung von Hayman ¨uber nullstellen meromorpher funktion,
    Math. Z., 149 (1976), 29-36.
    [7] G. Frank, W. Hennekemper and G. Polloczek, ¨ Uber die nullstellen meromorpher
    funktionen und deren ableitungen, Math. Ann., no.2 225 (1977), 145-154.
    [8] W. K. Hayman, Picard values of meromorphic functions and their derivatives,
    Ann. Math., 70 (1959), 9-42.
    [9] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
    [10] W. K. Hayman, Reseach Problems in Function Theory, London: Athlone Press,
    1967.
    [11] J. K. Langley, Proof of a conjecture of Hayman concerning f and f00, J. London
    Math. Soc., no.2 48 (1993), 500-514.
    [12] E. Mues, ¨ Uber ein problem von Hayman, Math. Z., 164 (1979), 239-259.
    [13] E. Mues, Meromorphic functions sharing four values, Complex Variables, 12
    (1989), 169–179.
    [14] W. Saxer, Sur les valeurs exceptionelles des d´eriv´ees successives des fonctions
    meromorphes, C. R. Acad. Sci. Paris, 182 (1926), 831-833.
    [15] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions,
    Kluwer Academic Publishers, 2003.
    [16] C. C. Yang and C. T. Chuang, Fixed points and factorization theory of meromorphic
    functions, Peking Univ. Press, 1988.
    [17] L. Zalcman, On some problems of Hayman, preprint (Bar-Ilan University).
    [18] L. Yang, Value distribution theory, Berlin Heidelberg: Springer-Verlag, Beijing:
    Science Press, 1993.
    [19] F. Gross, Factorizatioin of meromorphic functions, U. S. Government Printing
    Office, Washington, D. C.,1972.
    [20] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Pure
    and Applied Math. Monographs No. 32, Science Press, Beijing, 1995.
    [21] R. Nevanlinna, Le th´eor"eme de Picard-Borel et la th´eorie des fonctions
    m´eromorphes, Gauthiers-Villars, Paris, 1929.
    [22] H. Milloux, Les fonctions m´eromorphes et leurs d´eriv´ees, Paris, 1940.
    [23] K. Y. Chen, Some Results on the Uniqueness of Meromorphic Functions, PHD
    thesis, National Chengchi University, 2007.
    描述: 碩士
    國立政治大學
    應用數學研究所
    94751008
    96
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0094751008
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100801.pdf46KbAdobe PDF2637检视/开启
    100802.pdf25KbAdobe PDF2682检视/开启
    100803.pdf103KbAdobe PDF2718检视/开启
    100804.pdf26KbAdobe PDF2720检视/开启
    100805.pdf67KbAdobe PDF2716检视/开启
    100806.pdf47KbAdobe PDF2775检视/开启
    100807.pdf88KbAdobe PDF21240检视/开启
    100808.pdf49KbAdobe PDF2879检视/开启
    100809.pdf62KbAdobe PDF2873检视/开启
    100810.pdf107KbAdobe PDF2733检视/开启
    100811.pdf42KbAdobe PDF2838检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈