政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/31218
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51746326      線上人數 : 572
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/31218
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/31218


    題名: Implied Volatility Function - Genetic Algorithm Approach
    作者: 沈昱昌
    貢獻者: 陳威光
    江彌修



    沈昱昌
    關鍵詞: 基因演算法
    隱含波動度
    Genetic Algorithm
    Implied Volatility Function
    日期: 2004
    上傳時間: 2009-09-14 09:33:12 (UTC+8)
    摘要: 本文主要探討基因演算法(genetic algorithms)與S&P500指數選擇權為研究對象,利用基因演算法的模型來估測選擇權的隱含波動度後,進而求出選擇權的最適價值,用此來比較過去文獻中利用Jump-Diffusion Model、Stochastic Volatility Model與Local Volatility Model來估算選擇權的隱含波動度,使原始BS model中隱含波動度之估測更趨完善。在此篇論文中,以基因演算法求估的選擇權波動度以0.052的平均誤差值優於以Jump-Diffusion Model、Stochastic Volatility Model與Local Volatility Model求出之平均誤差值0.308,因此基因演算法確實可應用於選擇權波動度之求估。
    In this paper a different approach to the BS Model is proposed, by using genetic algorithms a non-parametric procedure for capturing the volatility smile and assess the stability of it. Applying genetic algorithm to this important issue in option pricing illustrates the strengths of our approach. Volatility forecasting is an appropriate task in which to highlight the characteristics of genetic algorithms as it is an important problem with well-accepted benchmark solutions, the models mention in the previous literatures mentioned above. Genetic algorithms have the ability to detect patterns in the conditional mean on both time and stock depend volatility. In addition, the stability test of the genetic algorithm approach will also be accessed. We evaluate the stability of the new approach by examining how well it predicts future option prices. We estimate the volatility function based on the cross-section of reported option prices one week, and then we examine the price deviations from theoretical values one week later.
    參考文獻: 1. Ait-Sahalia Y., Wang Y., Yared F. (1998). “Do Option Markets Correctly Asses the Probabilities of Movements of the Underlying Asset?” Forthcoming, Journal of Econometrics.
    2. Andersen L., Brotherton-Ratcliffe R. (1998). “The Equity OptionVolatility Smile: AFinite Difference Approach,” Journal of Computational Finance 1, 2, 5–38.
    3. Andersen T., Benzoni L., Lund J. (1999). “Estimating Jump-Diffusions for Equity Returns,” Working Paper, Northwestern University and Aarhus School of Business.
    4. Bakshi G., Cao C., Chen Z. (1997). “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance 52, 2003–2049.
    5. Bates D. (1996). “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,” Review of Financial Studies 9, 1, 69–107.
    6. Black F., Scholes M. (1973). “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy 81, 637–654
    7. Das S., Foresi S. (1996). “Exact Solutions for Bond and Option Prices with Systematic Jump Risk,” Review of Derivatives Research 1, 7–24.
    8. Dumas B., Fleming J., Whaley R.E. (1996). Implied Volatility Functions: Empirical Test, Working paper, National Bureau of Economic Research, Cambridge.
    9. Dupire B. (1994). “Pricing with a Smile,” RISK Magazine January, 18–20.
    10. Goldberg D., Deb K. (1991). “A comparative analysis of selection schemes used in genetic algorithms,” Foundations of Genetic Algorithms, San Francisco.
    11. Goldberg D., Korb B., Deb K. (1989). “Messy genetic algorithms: Motivation, analysis, and first results,” Complex Systems 3, 5.
    12. Heston S. (1993). “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Studies 6, 2, 327–343.
    13. Holland J. H. (1975). “Adaption in Natural and Artificial Systems,” The University of Michigan Press.
    14. Hull J, White A. (1987). “The Pricing of Options with Stochastic Volatilities,” Journal of Finance 42, 281–300.
    15. Koza, J.R. (1992). “Genetic Programming: On the Programming of Computers by Means of Natural Selection,” MIT Press, Cambridge MA.
    16. Lagnado R., Osher S. (1997). “Reconciling Differences,” RISK Magazine April, 79–83.
    17. Merton R. (1976). “Option Pricing when Underlying Stock Returns are Discontinuous,” Journal of Financial Economics May, 125–144.
    18. Rubinstein M. (1994). “Implied Binomial Trees,” Journal of Finance 49, 771–818.
    19. Smith S. (1980). “A Learning System Based on Genetic Adaptive Algorithms,” Ph.D. dissertation. University of Pittsburgh.
    20. Stein E, Stein J. (1991). “Stock Price Distributions with Stochastic Volatility: An Analytic Approach,” Review of Financial Studies 4, 4, 727–752.
    21. Webster’s II. (1994). New Riverside University Dictionary, Houghton Mifflin Company.
    描述: 碩士
    國立政治大學
    金融研究所
    91352031
    93
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0913520312
    資料類型: thesis
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2549檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋