Reference: | 中文部份: 1.賴景義:電腦輔助設計-B-spline基本特性介紹。 http://www.me.ncu.edu.tw/jylai/CAD/B-spline.doc 2.行政院衛生署--衛生統計資訊網。 http://www.doh.gov.tw/statistic/index.htm 3.財團法人預防醫學基金會-認識肝癌。 http://www.pmf.org.tw/hcc.htm 4. 蕭朱杏、莊愷瑋 (2001).地理統計於醫學與環境的應用,地理統計在農業和環境科學之應用研討會論文集,79-92頁,中國農業化學會。 5. 陳定信、賴明陽、陳健弘 (1991).本土醫學資料庫之建立及衛生政策上之應用,行政院衛生署八十年度委託研究計畫研究報告。 6. 行政院衛生署國民健康局 (2003).中華民國癌症死亡率分佈地圖集(1972-2001)。 7. 行政院衛生署國民健康局 (2003).中華民國癌症發生率分佈地圖集(1995-1998)。 英文部份: 1.Bernardinelli, L. and Montomoli, C. (1992). Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk. Statistics in Medicine. 11, 983-1007. 2.Besag, J., York, J. and Mollie, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics. 43, 1-21. 3.Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association. 88, 421, 9-25. 4.Chambers, J. M. and Hastie, T. J. (1992). Chapter 7 of Statistical Models in S. Pacific Grove, Calif.:Wadsworth & Brooks/Cole Advanced Books & Software. 5.Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics , 43, 671-681. 6.De Boor, C. (1978). A Practical Guide to Splines. New York:Springer-Verlag. 7.Gelfand, A. E. and Smith, A.F.M. (1990). Sampling based approaches to calculating marginal desities. J. Am. Statist. Ass. 85, 389-409. 8.Gelfand, A. E., Hills, S. E., Racine-Poon, A. and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Statist. Ass. 85, 972-985. 9.Lawson, A. B., Browne, W. J. and Vidal Roderiro, C. L. (2003). Disease Mapping with Winbugs and MLwin. England:John Wiley. 10.Myles, J. and Clayton, D. (2001). GLMMGibbs:An R package for estimating Bayesian Generalised Linear Mixed Models by Gibbs Sampling. 11.MacNab, Y. C. and Dean, C. B.(2000). Parametric bootstrap and penalized quasi-likelihood inference in conditional autoregressive models. Statistics in Medicine, 19, 2421-2435. 12.MacNab, Y. C. and Dean, C. B. (2001). Autoregressive spatial smoothing and temporal spline smoothing for mapping rates. Biometrics, 57, 949-956. 13.MacNab, Y. C. and Dean, C. B. (2002). Spatio-temporal modelling of rates for the construction of disease maps. Statistics in Medicine, 21, 347-358. 14.McCulloch, C. E. and Searle, S. R. (2001). Generalized, Liner, and Mixed models. New York:John Wiley. 15.Pickle, L. W. (2000). Exploring spatio-temporal patterns of mortality using mixed effects models. Statistics in Medicine, 19, 2251-2263. 16.Shene, C. K. (2003). Introduction to Computing with Geometry Notes. http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/notes.html 17.Tsutakawa, R. K. (1988). Mixed model for analyzing geographical variability in mortality rates. J. Am. Statist. Ass., 83, 37-42. 18.Venables, W. N. and Ripley, B.D. (2002). Modern Applied Statistics with S. New York:Springer. 19.Walter, S. D. and Birnie, S. E. (1991). Mapping mortality and morbidity patterns: an international comparison. International Journal of Epidemiology .20 (3), 678-689. |