Reference: | 英文部分: [1] Brace, A., D. Gatarek and M. Musiela (1997). The Market Model of Interest Rate . Dynamics Mathematical Finance 7, 127-155. [2] Cox, J.C., Ingersoll, J.E., and Ross, S.A. (1985), A Theory of the Term Structure of Interest Rates, Econometrica 53, 385-407. [3] Damiano Brigo and Mercurio, Interest Rate Models Theory and Pratice. [4] Heath, D., Jarrow, R. and Morton, A. (1992), Bond Pricing and the Term Structure of Interest Rates: A New Mthodology, Econometrica 60, 77-105. [5] Ho, T.S.Y. and Lee, S.B. (1986), Term Structure Movements and the Pricing of Interest Rate Contingent Claims, The Journal of Finance 41, 1011-1029. [6] Hull, J., White, A.(1990a), Valuing Derivative Securities Using the Explicit Finite Difference Method, Journal of Financial and Quantitative Analysis 25, 87-100. [7] Hull, J., White, A.(1990b), Pricing Interest Rate Derivative Securities, The Review of Financial Studies 3, 573-592. [8] Jamshidian, F. (1997). LIBOR and Swap Market Models and Measures . Finance and Stochastics 1, 293-330. [9] Longstaff, F. and E. Schwartz (2001), Valuing American Option by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies, Vol. 14, No.1, 113-147. [10] Piterbarg, V., (2003), A Practitioner`s Guide to Pricing and Hedging Callable Libor Exotics in Forward Libor Models, SSPN Paper. [11] Piterbarg, V., (2004), Pricing and Hedging Callable Libor Exotics in Forward Libor Models,Journal of Computational Finance, Vol.8, No.2, 65-117. [12] Vasicek, O. (1997), An Equilibrium Characterization of the Term Structure, Journal of Financial Economics 5,177-188. 中文部分: [1] 陳松男(2006),利率金融工程學,新陸書局。 [2] 陳妙津(2006),利用最小平方蒙地卡羅法評價百慕達式利率交換選擇權,政治大學,碩士論文。 [3] 曹若玹(2006),可贖回雪球式商品的評價與避險,政治大學,碩士論文。 [4] 蔡宗儒(2006),LIBOR新奇選擇權之評價—以最小平方蒙地卡羅法為例,政治大學,碩士論文。 |