English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51630020      Online Users : 565
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/30897
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/30897


    Title: 含存活分率之貝氏迴歸模式
    Authors: 李涵君
    Contributors: 陳麗霞
    李涵君
    Keywords: 存活分率
    貝氏治癒率模式
    Weibull迴歸模式
    對數邏輯斯迴歸模式
    完全條件後驗分配
    馬可夫鏈蒙地卡羅方法
    Gibbs抽樣法
    條件預測指標
    對數擬邊際概似函數值
    surviving fraction
    Bayesian cure rate models
    Weibull regression model
    log-logistic regression model
    full conditional posterior distributions
    Markov chain Monte Carlo method (MCMC)
    Gibbs sampling
    conditional predictive ordinate (CPO)
    log of pseudomarginal likelihood (LPML)
    Date: 2005
    Issue Date: 2009-09-14
    Abstract: 當母體中有部份對象因被治癒或免疫而不會失敗時,需考慮這群對象所佔的比率,即存活分率。本文主要在探討如何以貝氏方法對含存活分率之治癒率模式進行分析,並特別針對兩種含存活分率的迴歸模式,分別是Weibull迴歸模式以及對數邏輯斯迴歸模式,導出概似函數與各參數之完全條件後驗分配及其性質。由於聯合後驗分配相當複雜,各參數之邊際後驗分配之解析形式很難表達出。所以,我們採用了馬可夫鏈蒙地卡羅方法(MCMC)中的Gibbs抽樣法及Metropolis法,模擬產生參數值,以進行貝氏分析。實證部份,我們分析了黑色素皮膚癌的資料,這是由美國Eastern Cooperative Oncology Group所進行的第三階段臨床試驗研究。有關模式選取的部份,我們先分別求出各對象在每個模式之下的條件預測指標(CPO),再據以算出各模式的對數擬邊際概似函數值(LPML),以比較各模式之適合性。
    When we face the problem that part of subjects have been cured or are immune so they never fail, we need to consider the fraction of this group among the whole population, which is the so called survival fraction. This article discuss that how to analyze cure rate models containing survival fraction based on Bayesian method. Two cure rate models containing survival fraction are focused; one is based on the Weibull regression model and the other is based on the log-logistic regression model. Then, we derive likelihood functions and full conditional posterior distributions under these two models. Since joint posterior distributions are both complicated, and marginal posterior distributions don’t have closed form, we take Gibbs sampling and Metropolis sampling of Markov Monte Carlo chain method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the data from a melanoma clinical trial in the third stage conducted by Eastern Cooperative Oncology Group. To do model selection, we compute the conditional predictive ordinate (CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudomarginal likelihood (LPML) of each model.
    Reference: 1. Berkson, J., and Gage, R. P. (1952). Survival curve for cancer patients following treatment. Journal of the American Statistical Association, 47, 501-515.
    2. Betensky, R. A., and Schoenfeld, D. A. (2001). Nonparametric estimation in a cure model with random cure times. Biometrics, 57, 282-286.
    3. Chen, M.-H., Ibrahim, J. G., and Sinha, D. (1999). A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association, 94, 909-918.
    4. Chen, M.-H., Shao, Q,-M., and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. New York: Springer.
    5. Chen, M.-H., and Ibrahim, J. G. (2002). Bayesian cure rate models for melanoma: a case-study of Eastern Cooperative Oncology Group trail E1690. Apply Statistic, 51, 135-150.
    6. Cho, M., Schenker, N., Taylor, J. M. G., and Zhuang, D. (2001). Survival analysis with long-term survivors and partially observed covariates. The Canadian Journal of Statistics, 29, 421-436.
    7. Diebolt, J., and Robert, C. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, 56, 363-375.
    8. Ewell, M., and Ibrahim, J. G. (1997). The large sample distribution of the weighted log rank statistic under general local alternatives. Lifetime data analysis, 3, 5-12.
    9. Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics, 38, 1041-1046.
    10. ─── (1986). Mixture models in survival analysis: Are they worth the risk? Canadian Journal of Statistics, 14, 337-348.
    11. Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics 4, pp. 147-167. Oxford: Oxford University Press.
    12. Gilks, W. R., and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348.
    13. Goldman, A. I., (1984). Survivorship analysis when cure is a possibility: A Monte Carlo study. Statistics in Medicine, 3, 153-163.
    14. Gray, R. J., and Tsiatis, A. A. (1989). A linear rank test for use when the main interest is in differences in cure rates. Biometrics, 45, 899-904.
    15. Greenhouse, J. B., and Wolfe, R. A. (1984). A competing risks derivation of a mixture model for the analysis of survival. Communications in Statistics, 13, 3133-3154.
    16. Halpern, J., and Brown, B. W., Jr. (1987a). Cure rate models: Power of the log rank and generalized wilcoxon tests. Statistics in Medicine. 6, 483-489.
    17. ───(1987b). Designing clinical trials with arbitrary specification of survival functions and for the log rank or generalized Wilcoxon test. Controlled Clinical Trials, 8,177-189.
    18. Hoggart, C. J., Griffin, J. E. (2001), A Bayesian partition model for customer attrition. Proceedings of the ISBA conference, 61-70.
    19. Ibrahim, J. G., Chen, M.-H. (2000). Power prior distributions for regression models. Statistical Science, 15, 46-60.
    20. Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer.
    21. Kuk, A. Y. C., and Chen, C.-H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika, 79, 531-541.
    22. Laska, E. M., and Meisner, M. J. (1992). Nonparametric estimation and testing in a cure rate model. Biometrics, 48, 1223-1234.
    23. Miller, R. G. (1981). Survival analysis. New York: John Wiley.
    24. Maller R., and Zhou X. (1996). Survival analysis with long-term survivors. New York: Wiley.
    25. Peng, Y., and Dear, K. B. G. (2000). A nonparametric mixture model for cure rate estimation. Biometrics, 56, 237-243.
    26. Seltman, H., Greenhouse, J., and Wasserman, L. (2001). Bayesian model selection: analysis of a survival model with a surviving fraction. Statistics in Medicine, 20, 1681-1691.
    27. Sinha, D., and Dey, D. K. (1997). Semiparametric Bayesian methods for survival data. Journal of the American Statistical Association, 92, 1195-1212.
    28. Sinha, D., Patra, K., and Dey, D. K. (2003). Modelling accelerated life test data by using a Bayesian approach. Apply Statistic, 52, 249-259.
    29. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583-639.
    30. Sposto, R., Sather, H. N., and Baker, S. A. (1992). A comparison of tests of the difference in the proportion of patients who are cured. Biometrics, 48, 87-99.
    31. Stangl, D. K., and Greenhouse, J. B. (1998). Assessing placebo response using Bayesian Hierarchical survival models. Lifetime Data Analysis, 4, 5-28.
    32. Sy, J. P., and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics, 56, 227-236.
    33. Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models. Biometrics, 51, 899-907.
    34. Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of “permanent employment” in Japan. Journal of the American Statistical Association, 87, 284-292.
    35. Yin, G. (2005). Bayesian cure rate frailty models with application to a root canal therapy study. Biometrics, 61, 552-558.
    參考網站
    http://www.stat.uconn.edu/~mhchen/survbook/
    Description: 碩士
    國立政治大學
    統計研究所
    93354008
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093354008
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2359View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback