Reference: | 1. Berkson, J., and Gage, R. P. (1952). Survival curve for cancer patients following treatment. Journal of the American Statistical Association, 47, 501-515. 2. Betensky, R. A., and Schoenfeld, D. A. (2001). Nonparametric estimation in a cure model with random cure times. Biometrics, 57, 282-286. 3. Chen, M.-H., Ibrahim, J. G., and Sinha, D. (1999). A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association, 94, 909-918. 4. Chen, M.-H., Shao, Q,-M., and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. New York: Springer. 5. Chen, M.-H., and Ibrahim, J. G. (2002). Bayesian cure rate models for melanoma: a case-study of Eastern Cooperative Oncology Group trail E1690. Apply Statistic, 51, 135-150. 6. Cho, M., Schenker, N., Taylor, J. M. G., and Zhuang, D. (2001). Survival analysis with long-term survivors and partially observed covariates. The Canadian Journal of Statistics, 29, 421-436. 7. Diebolt, J., and Robert, C. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, 56, 363-375. 8. Ewell, M., and Ibrahim, J. G. (1997). The large sample distribution of the weighted log rank statistic under general local alternatives. Lifetime data analysis, 3, 5-12. 9. Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics, 38, 1041-1046. 10. ─── (1986). Mixture models in survival analysis: Are they worth the risk? Canadian Journal of Statistics, 14, 337-348. 11. Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics 4, pp. 147-167. Oxford: Oxford University Press. 12. Gilks, W. R., and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348. 13. Goldman, A. I., (1984). Survivorship analysis when cure is a possibility: A Monte Carlo study. Statistics in Medicine, 3, 153-163. 14. Gray, R. J., and Tsiatis, A. A. (1989). A linear rank test for use when the main interest is in differences in cure rates. Biometrics, 45, 899-904. 15. Greenhouse, J. B., and Wolfe, R. A. (1984). A competing risks derivation of a mixture model for the analysis of survival. Communications in Statistics, 13, 3133-3154. 16. Halpern, J., and Brown, B. W., Jr. (1987a). Cure rate models: Power of the log rank and generalized wilcoxon tests. Statistics in Medicine. 6, 483-489. 17. ───(1987b). Designing clinical trials with arbitrary specification of survival functions and for the log rank or generalized Wilcoxon test. Controlled Clinical Trials, 8,177-189. 18. Hoggart, C. J., Griffin, J. E. (2001), A Bayesian partition model for customer attrition. Proceedings of the ISBA conference, 61-70. 19. Ibrahim, J. G., Chen, M.-H. (2000). Power prior distributions for regression models. Statistical Science, 15, 46-60. 20. Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer. 21. Kuk, A. Y. C., and Chen, C.-H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika, 79, 531-541. 22. Laska, E. M., and Meisner, M. J. (1992). Nonparametric estimation and testing in a cure rate model. Biometrics, 48, 1223-1234. 23. Miller, R. G. (1981). Survival analysis. New York: John Wiley. 24. Maller R., and Zhou X. (1996). Survival analysis with long-term survivors. New York: Wiley. 25. Peng, Y., and Dear, K. B. G. (2000). A nonparametric mixture model for cure rate estimation. Biometrics, 56, 237-243. 26. Seltman, H., Greenhouse, J., and Wasserman, L. (2001). Bayesian model selection: analysis of a survival model with a surviving fraction. Statistics in Medicine, 20, 1681-1691. 27. Sinha, D., and Dey, D. K. (1997). Semiparametric Bayesian methods for survival data. Journal of the American Statistical Association, 92, 1195-1212. 28. Sinha, D., Patra, K., and Dey, D. K. (2003). Modelling accelerated life test data by using a Bayesian approach. Apply Statistic, 52, 249-259. 29. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583-639. 30. Sposto, R., Sather, H. N., and Baker, S. A. (1992). A comparison of tests of the difference in the proportion of patients who are cured. Biometrics, 48, 87-99. 31. Stangl, D. K., and Greenhouse, J. B. (1998). Assessing placebo response using Bayesian Hierarchical survival models. Lifetime Data Analysis, 4, 5-28. 32. Sy, J. P., and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics, 56, 227-236. 33. Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models. Biometrics, 51, 899-907. 34. Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of “permanent employment” in Japan. Journal of the American Statistical Association, 87, 284-292. 35. Yin, G. (2005). Bayesian cure rate frailty models with application to a root canal therapy study. Biometrics, 61, 552-558. 參考網站 http://www.stat.uconn.edu/~mhchen/survbook/ |