Reference: | Brauneis, A., Mestel, R., & Theissen, E. (2025). The crypto world trades at tea time: intraday evidence from centralized exchanges across the globe. Review of Quantitative Finance and Accounting, 64(1), 275-304. Brock, W. A., & Kleidon, A. W. (1992). Periodic market closure and trading volume: A model of intraday bids and asks. Journal of Economic Dynamics and Control, 16(3-4), 451-489. Chordia, T., Roll, R., & Subrahmanyam, A. (2002). Order imbalance, liquidity, and market returns. Journal of Financial economics, 65(1), 111-130. Cont, R., Kukanov, A., & Stoikov, S. (2014). The price impact of order book events. Journal of financial econometrics, 12(1), 47-88. Easley, D., Hvidkjaer, S., & O'hara, M. (2002). Is information risk a determinant of asset returns?. The journal of finance, 57(5), 2185-2221. Glosten, L. R., & Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of financial economics, 14(1), 71-100. Hansen, P. R., Kim, C., & Kimbrough, W. (2024). Periodicity in cryptocurrency volatility and liquidity. Journal of Financial Econometrics, 22(1), 224-251. Heston, S. L., Korajczyk, R. A., & Sadka, R. (2010). Intraday patterns in the cross‐section of stock returns. The Journal of Finance, 65(4), 1369-1407. Mazza, P. (2015). Price dynamics and market liquidity: An intraday event study on Euronext. The Quarterly Review of Economics and Finance, 56, 139-153. Muravyev, D., & Picard, J. (2022). Does trade clustering reduce trading costs? Evidence from periodicity in algorithmic trading. Financial Management, 51(4), 1201-1229. Nousi, P., Tsantekidis, A., Passalis, N., Ntakaris, A., Kanniainen, J., Tefas, A., ... & Iosifidis, A. (2019). Machine learning for forecasting mid-price movements using limit order book data. Ieee Access, 7, 64722-64736. Roşu, I. (2009). A dynamic model of the limit order book. The Review of Financial Studies, 22(11), 4601-4641. Sirignano, J., & Cont, R. (2021). Universal features of price formation in financial markets: perspectives from deep learning. In Machine learning and AI in finance (pp. 5-15). Routledge. Wang, J. N., Liu, H. C., & Hsu, Y. T. (2020). Time-of-day periodicities of trading volume and volatility in Bitcoin exchange: does the stock market matter?. Finance Research Letters, 34, 101243. Wątorek, M., Skupień, M., Kwapień, J., & Drożdż, S. (2023). Decomposing cryptocurrency high-frequency price dynamics into recurring and noisy components. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(8). |