English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 116028/147069 (79%)
造访人次 : 58205279      在线人数 : 77
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/156774


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/156774


    题名: Enhancing Anomaly Detection in Structured Data Using Siamese Neural Networks as a Feature Extractor
    作者: 周珮婷
    Chou, Elizabeth P.;Hsieh, Bo-Cheng
    贡献者: 統計系
    关键词: siamese neural network;anomaly detection;structured data;supervised learning
    日期: 2025-03
    上传时间: 2025-04-30 15:03:20 (UTC+8)
    摘要: Anomaly detection in structured data presents significant challenges, particularly in scenarios with extreme class imbalance. The Siamese Neural Network (SNN) is traditionally recognized for its ability to measure pairwise similarities, rather than being utilized as a feature extractor. However, in this study, we introduce a novel approach by leveraging the feature extraction capabilities of SNN, inspired by the powerful representation learning ability of neural networks. We integrate SNN with four different classifiers and the Synthetic Minority Over-sampling Technique (SMOTE) for supervised anomaly detection and evaluate its performance across five structured datasets under varying anomaly ratios. Our findings reveal that, when used as a feature extractor, SNN significantly enhances classification performance and demonstrates superior robustness compared to traditional anomaly detection methods, particularly under extreme class imbalance. These results highlight the potential of repurposing SNN beyond similarity learning, offering a scalable and effective feature extraction framework for anomaly detection in structured data applications.
    關聯: Mathematics, Vol.13, No.7, 1090
    数据类型: article
    DOI 連結: https://doi.org/10.3390/math13071090
    DOI: 10.3390/math13071090
    显示于类别:[統計學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML78检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈