政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/156149
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114987/146039 (79%)
造訪人次 : 54042273      線上人數 : 386
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 會議論文 >  Item 140.119/156149
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/156149


    題名: Exploring the Semantic Representations of Text in Subspaces of Latent Space: A Case Study on Color
    作者: 蕭舜文
    Hsiao, Shun-Wen;Lo, Yung-Fu
    貢獻者: 資管系
    關鍵詞: Latent Space;Semantic Representation;Concept Subspace;Projection Optimization;NLP
    日期: 2024-12
    上傳時間: 2025-03-12 10:22:06 (UTC+8)
    摘要: Language models like BERT have advanced the representation of textual semantics in high-dimensional latent spaces, enabling numerous natural language processing applications. However, their capacity to represent domain-specific concepts, such as "color," remains underexplored. This study investigated the semantic representation of text in color concept subspace of latent space. Using embeddings of nearly 1,000 color names from the XKCD color survey generated by BERT, we identified limitations in BERT’s ability to cluster perceptually similar colors. To address this, we proposed a supervised learning approach to project embeddings into a color-specific subspace, isolating and enhancing color semantics. Experimental results demonstrated the methodology’s effectiveness in improving semantic clustering through qualitative and quantitative evaluations. Moreover, our general approach not only explored the concept of color but also provided the possibility of exploring and disentangling semantic subspaces for other domain-specific concepts, contributing to the understanding and manipulation of latent space structures in language models.
    關聯: Proceeding of IEEE International Conference on Big Data, IEEE, pp.8765-8767
    資料類型: conference
    DOI 連結: https://doi.org/10.1109/BigData62323.2024.10825707
    DOI: 10.1109/BigData62323.2024.10825707
    顯示於類別:[資訊管理學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML6檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋