政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/156149
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 115726/146760 (79%)
造访人次 : 56419380      在线人数 : 77
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 會議論文 >  Item 140.119/156149


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/156149


    题名: Exploring the Semantic Representations of Text in Subspaces of Latent Space: A Case Study on Color
    作者: 蕭舜文;羅永富
    Hsiao, Shun-Wen;Lo, Yung-Fu
    贡献者: 資管系
    关键词: Latent Space;Semantic Representation;Concept Subspace;Projection Optimization;NLP
    日期: 2024-12
    上传时间: 2025-03-12 10:22:06 (UTC+8)
    摘要: Language models like BERT have advanced the representation of textual semantics in high-dimensional latent spaces, enabling numerous natural language processing applications. However, their capacity to represent domain-specific concepts, such as "color," remains underexplored. This study investigated the semantic representation of text in color concept subspace of latent space. Using embeddings of nearly 1,000 color names from the XKCD color survey generated by BERT, we identified limitations in BERT’s ability to cluster perceptually similar colors. To address this, we proposed a supervised learning approach to project embeddings into a color-specific subspace, isolating and enhancing color semantics. Experimental results demonstrated the methodology’s effectiveness in improving semantic clustering through qualitative and quantitative evaluations. Moreover, our general approach not only explored the concept of color but also provided the possibility of exploring and disentangling semantic subspaces for other domain-specific concepts, contributing to the understanding and manipulation of latent space structures in language models.
    關聯: Proceeding of IEEE International Conference on Big Data, IEEE, pp.8765-8767
    数据类型: conference
    DOI 連結: https://doi.org/10.1109/BigData62323.2024.10825707
    DOI: 10.1109/BigData62323.2024.10825707
    显示于类别:[資訊管理學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML96检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈