政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/155528
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114393/145446 (79%)
Visitors : 53041208      Online Users : 655
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/155528


    Title: 再探投資組合建立的變數選取
    Revisit the variable selection for portfolio construction
    Authors: 黃群翔
    Huang, Chiun-Shiang
    Contributors: 林士貴
    黃群翔
    Huang, Chiun-Shiang
    Keywords: 投資組合構建
    變數選取
    財務管理
    市場預測
    資產配置
    Portfolio construction
    Variable selection
    Financial management
    Market prediction
    Asset allocation
    Date: 2024
    Issue Date: 2025-02-04 16:19:47 (UTC+8)
    Abstract: 投資組合構建是財務管理中的一個核心問題,隨著市場條件的不斷變化和金融工具的多樣化,如何選取合適的變數來優化投資組合成為了一個持續挑戰。有效的投資組合變數選取方法可以顯著提高投資績效,降低風險,並幫助投資者在複雜且動態的市場中做出明智的決策。本研究旨在回顧並重新探討投資組合構建中的變數選取問題。Aït-Sahalia & Brandt (2001)在其開創性的論文中提出了一種系統化的方法來選擇影響投資組合績效的關鍵變數。這些方法在當時提供了有效的理論框架和實證支持,對投資組合管理實務產生了深遠的影響。然而,隨著市場環境的變化和數據分析技術的進步,有必要重新評估這些方法在當前市場環境中的適用性和有效性。本文將通過實證分析和理論研究,探討2001年提出的變數選取方法是否仍然具有優越性,並考察是否有更優的新方法可供選擇。研究結果顯示,收益和收益共變異數在較長期限內更具可預測性。股票收益率比債券收益率具有更高的可預測性,而收益變異數在本研究中無顯著可預測性。平均-變異數投資者在無條件投資組合選擇中的風險部位於不同投資期限內皆相同,與風險趨避程度無關,驗證了兩基金分離理論。條件預測最佳投資組合的能力相較以往減弱,近年來的回報模式顯示出不同於1954-1997年期間的變化。這些結果初步揭示了現代市場環境中變數選取的挑戰和機會,為未來研究探索更有效的變數選取策略提供了基礎,以幫助投資者在複雜的市場環境中做出更明智的投資決策。
    Portfolio construction is a core issue in financial management. With the continuous changes in market conditions and the diversification of financial instruments, selecting
    appropriate variables to optimize a portfolio has become a persistent challenge. Effective variable selection methods for portfolio construction can significantly
    improve investment performance, reduce risk, and help investors make informed decisions in complex and dynamic markets. This study aims to review and re-examine
    the issue of variable selection in portfolio construction. Aït-Sahalia & Brandt (2001) proposed a systematic method in their groundbreaking paper to select key variables that
    impact portfolio performance. These methods provided an effective theoretical framework and empirical support at the time, having a profound impact on portfolio
    management practice. However, with changes in the market environment and advancements in data analysis techniques, it is necessary to reassess the applicability
    and effectiveness of these methods in the current market environment. This paper will explore through empirical analysis and theoretical research whether the variable
    selection methods proposed in 2001 still possess superiority and whether there are better new methods available. The research results show that returns and return
    covariances are more predictable over longer horizons. Stock returns are more predictable than bond returns, while return variances are not significantly predictable
    in this study. Mean-variance investors have the same risk positions in unconditional portfolio choices across different investment horizons, regardless of risk aversion,
    confirming the two-fund separation theory. The ability to conditionally predict optimal portfolios has weakened compared to the past, and recent return patterns differ from
    those in the 1954-1997 period. These results initially reveal the challenges and opportunities in variable selection in the modern market environment, providing a foundation for future research to explore more effective variable selection strategies to help investors make wiser investment decisions in complex market environments.
    Reference: Aït-Sahalia, Y., & Brandt, M. W. (2001). Variable selection for portfolio choice. Journal of Finance, 56(4), 1297-1351.
    Avramov, D. (1999). Stock return predictability and the implied equity premium. Journal of Financial Economics, 52(2), 277-306.
    Balduzzi, P., & Lynch, A. W. (1999). Transaction costs and predictability: Some utility cost calculations. Journal of Financial Economics, 52(1), 47-78.
    Barberis, N. (2000). Investing for the long run when returns are predictable. Journal of Finance, 55(1), 225-264.
    Bekaert, G., & Harvey, C. R. (2003). Emerging markets finance. Journal of Empirical Finance, 10(1-2), 3-55.
    Brandt, M. W. (1999). Estimating portfolio and consumption choice: A conditional euler equations approach. Journal of Finance, 54(5), 1609-1645.
    Brandt, M. W., & Santa-Clara, P. (2006). Dynamic portfolio selection by augmenting the asset space. Journal of Finance, 61(5), 2187-2217.
    Campbell, J. Y., & Viceira, L. M. (1999). Consumption and portfolio decisions when expected returns are time varying. Quarterly Journal of Economics, 114(2), 433-495.
    Campbell, J. Y., & Viceira, L. M. (2002). Strategic asset allocation: Portfolio choice for long-term investors. Oxford University Press.
    De Bondt, W. F. M., & Thaler, R. (1985). Does the stock market overreact? Journal of Finance, 40(3), 793-805.
    Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417.
    Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22(1), 3-25.
    Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23-49.
    Fan, J., & Li, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. Proceedings of the International Congress of
    Mathematicians, 3, 595-622.
    Fung, W., & Hsieh, D. A. (2001). The risk in hedge fund strategies: Theory and evidence from trend followers. Review of Financial Studies, 14(2), 313-341.
    Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029-1054.
    Hodrick, R. J. (1992). Dividend yields and expected stock returns: Alternative procedures for inference and measurement. Review of Financial Studies, 5(3), 357-386.
    Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance, 48(1), 65-91.
    Kandel, S., & Stambaugh, R. F. (1996). On the predictability of stock returns: An asset allocation perspective. Journal of Finance, 51(2), 385-424.
    Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291.
    Keim, D. B., & Stambaugh, R. F. (1986). Predicting returns in the stock and bond markets. Journal of Financial Economics, 17(2), 357-390.
    Kolanovic, M., & Krishnamachari, R. (2017). Big data and AI strategies. J.P. Morgan Global Quantitative and Derivatives Strategy Report.
    Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77-91.
    Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341-360.
    Schneeweis, T., & Spurgin, R. B. (1998). Multifactor models in managed futures, hedge fund and mutual fund return estimation. Journal of Alternative Investments, 1(2), 1-24.
    Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442.
    Shiller, R. J. (2003). From efficient markets theory to behavioral finance. Journal of Economic Perspectives, 17(1), 83-104.
    Description: 碩士
    國立政治大學
    金融學系
    111352037
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111352037
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    203701.pdf1534KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback