政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/154915
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51786812      在线人数 : 425
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 會議論文 >  Item 140.119/154915


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/154915


    题名: Bayesian inference for differential item functioning detection in a multiple-group IRT tree model
    作者: 張育瑋
    Chang, Yu-Wei;Yang, Cheng-Xin
    贡献者: 統計系
    日期: 2023-08
    上传时间: 2024-12-26 13:28:02 (UTC+8)
    摘要: Group differences have practical implications in analyzing data from achievement tests or questionnaires. For example, whether two persons from different demographic groups, such as gender or race, with the same shopping preferences have different shopping habits on one aspect helps store managers better design their displays. Shopping habits and shopping preferences can be measured by items and some latent factors in a questionnaire, and the different shopping habits observed on an item are called differential item functioning (DIF). In the current study, a model that accounts for between-group differences, DIF, latent factors, and missing item response data simultaneously is developed by expanding a one-group item response tree model into a multiple-group model. Different from most of the present DIF studies, where one has to iteratively select anchor items and detect DIF items, DIF detection and parameter estimation simultaneously are achieved by properly reparameterizing model parameters and applying some spike-and-slab priors in Bayesian estimation. Simulation studies are conducted to illustrate the validation of the proposed estimation procedure and the efficiency of DIF detection. The proposed method is further applied to a real dataset for illustration.
    關聯: 6th International Conference on Econometrics and Statistics (EcoSta 2023), 早稻田大學
    数据类型: conference
    显示于类别:[統計學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML4检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈