English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51785640      Online Users : 338
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152782
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152782


    Title: 無母數多元邏輯斯迴歸之spline估計與節點選取
    Nonparametric Multinomial Logistic Regression Spline Estimation and Knots Selection
    Authors: 張軼棣
    Chang, I-Ti
    Contributors: 黃子銘
    黃佳慧

    Huang, Tzee-Ming
    Huang, Chia-Hui

    張軼棣
    Chang, I-Ti
    Keywords: 樣條
    樣條邏輯斯迴歸
    節點
    變數篩選
    B-spline
    Spline Logistic Regression
    Knots
    Variable Selection
    Date: 2024
    Issue Date: 2024-08-05 14:00:39 (UTC+8)
    Abstract: 樣條函數的靈活性在於節點位置和數量作為自由變數,使得其在配適過程中具有多樣的功能。本研究深入探討樣條邏輯斯迴歸(spline logistic regression)中的兩種邏輯斯函數,致力於建立在不同節點配置下的對比效果。為了提升模型選擇的效率,我們對傳統的AIC向後選取法(backward AIC)進行了改良,特別適用於樣條邏輯斯迴歸。

    我們的改良方法不僅能夠同時針對不同邏輯斯函數下的節點進行篩選,同時透過優化參數和變數篩選方法,相較於傳統AIC向後選取法,獲得更為優越的效果。此外,本研究進一步模擬了不同初始節點下的篩選效果,並使用ISE(integrated squared error)的平均值來評估各種情況下的模型配適效果。這項模擬的結果有助於更全面地理解不同初始節點配置對模型性能的影響,並提供對於節點選擇的方向。整體而言,本研究綜合運用不同方法,致力於提升樣條邏輯斯迴歸的節點選擇和估計效能。
    The flexibility of spline functions lies in the freedom to choose the positions and number of knots, which endows them with diverse capabilities during the fitting process. This study delves into two different logistic functions within spline logistic regression, aiming to establish a comparative analysis under various knot configurations. To enhance the efficiency of model selection, we have improved the traditional backward AIC method, making it particularly suitable for spline logistic regression.

    Our improved method not only allows for the simultaneous selection of knots under different logistic functions but also achieves superior performance compared to the traditional backward AIC method through parameter optimization and variable selection techniques. Additionally, this study simulates the selection effect under different initial knot configurations and uses the mean integrated squared error (ISE) to evaluate the model fitting performance in various scenarios. The simulation results contribute to a more comprehensive understanding of how different initial knot configurations affect model performance and provide guidance on knot selection. Overall, this research integrates various approaches to enhance knot selection and estimation efficiency in spline logistic regression.
    Reference: S. Arifin, A. Islamiyati and E. T. Herdiani.
    Ability of ordinal spline logistic regression model in the classification of nutritional status data,
    Commun. Math. Biol. Neurosci., Article ID 83, 2023.

    A. Yonar and H. Yonar.
    An Efficient Hybrid Algorithm with Particle Swarm Optimization and Nelder-Mead Algorithm for Parameter Estimation of Nonlinear Regression Modeling,
    Gazi University Journal of Science, vol. 35, no. 2, pp. 716–729, 2022.

    J. A. Nelder and R. Mead.
    A Simplex Method for Function Minimization,
    The Computer Journal,
    vol. 7, Issue 4, pp. 308–313, January 1965.

    F. Bessaoud, J.-P. Daures and N. Molinari.
    Free knot splines for logistic models and threshold selection,
    Computer Methods and Programs in Biomedicine,
    vol. 77, no. 1, pp. 1-9, January 2005.

    E. J. Malloy, D. Spiegelman and E. A. Eisen.
    Comparing measures of model selection for penalized splines in Cox models,
    Computational Statistics \& Data Analysis,
    vol. 53, no. 7, pp. 2605-2616, May 15, 2009.
    Description: 碩士
    國立政治大學
    統計學系
    111354029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354029
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402901.pdf1067KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback