English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52067925      Online Users : 760
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152780
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152780


    Title: 基於Copula Entropy的變數選取方法與節點選取方法
    Variable Selection Method and Knot Selection Method Based on Copula Entropy
    Authors: 張軼棠
    Chang, I-Tang
    Contributors: 黃子銘
    Huang, Tzee-Ming
    張軼棠
    Chang, I-Tang
    Keywords: Lasso變數選取
    Stepwise變數選取
    Copula entropy
    B-spline函數
    Lasso Variable Selection
    Stepwise Variable Selection
    Copula Entropy
    B-spline
    Date: 2024
    Issue Date: 2024-08-05 14:00:15 (UTC+8)
    Abstract: 本研究透過copula entropy的應用,優化stepwise變數選取方法,並將其應用於B-spline函數中來近似實際函數,以挑選出必要的節點,同時又能減少與實際函數間的誤差。此方法利用copula entropy的獨特特性,以及RCV(refitted cross-validation)變異數估計方法,改善了stepwise變數選取的方法,此外,我們將改進方法與其他方法進行比較,以驗證其在實際應用中的效能表現。實驗結果顯示,此方法在回歸函數上誤差和準確率方面優於其他常見的變數選取方法,在近似spline函數上於部分情況中也表現出較佳的節點挑選效果,進而在B-spline函數的應用中實現更有效率的節點選擇。
    In this study, we optimize the stepwise variable selection method through the application of copula entropy and apply it to the B-spline function to approximate the actual function in order to pick out the necessary knots and at the same time reduce the error with the actual function. This method improves the stepwise variable selection method by utilizing the unique characteristics of copula entropy and the RCV (refitted cross-validation) estimation method. In addition, we compare the improved method with other methods to verify its performance in practical applications. The experimental results show that this method outperforms other common variable selection methods in terms of error and accuracy on the regression function, and also shows better knot selection on the approximate spline function in some cases, which leads to more efficient knot selection in the application of the B-spline function.
    Reference: Ty Adams. Forward selection via distance correlation. 2019.

    Jianqing Fan, Shaojun Guo, and Ning Hao. Variance Estimation Using Refitted Cross-Validation in Ultrahigh Dimensional Regression. Journal of the Royal Statistical Society
    Series B: Statistical Methodology, 74(1):37–65, 10 2011.

    Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42(1):80–86, 2000.

    Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical Review E, 69(6), June 2004.

    Jian Ma. Variable selection with copula entropy. ArXiv, abs/1910.12389, 2019.

    Jian Ma. copent: Estimating copula entropy and transfer entropy in r, 2021.

    E Sunandi, K A Notodoputro, and B Sartono. A study on group lasso for grouped variable selection in regression model. IOP Conference Series: Materials Science and Engineering, 1115(1):012089, 2021.

    Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

    Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68:49–67, 2006.

    Dennis D Boos Yujun Wu and Leonard A Stefanski. Controlling variable selection by the addition of pseudovariables. Journal of the American Statistical Association,
    102(477):235–243, 2007.

    Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418–1429, 2006.

    Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):301–320, 2005.
    Description: 碩士
    國立政治大學
    統計學系
    111354025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354025
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402501.pdf934KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback