政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152773
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113822/144841 (79%)
造訪人次 : 51800787      線上人數 : 134
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152773
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/152773


    題名: 比較與衡量線性迴歸模型中解釋變數的相對重要性指標
    Compare and evaluate the relative importance metrics for explanatory variables in the linear regression model
    作者: 吳宏煇
    Wu, Hong-Huei
    貢獻者: 鄭宗記
    Cheng, Tsung-Chi
    吳宏煇
    Wu, Hong-Huei
    關鍵詞: 多元線性迴歸
    相對重要性
    LMG 指標
    比例邊際變異分解指標
    Epsilon 指標
    優勢分析
    偏F 檢定
    熱圖
    拔靴法
    馬可夫鏈排序
    日期: 2024
    上傳時間: 2024-08-05 13:58:54 (UTC+8)
    摘要: 多元線性迴歸模型中的解釋變數之相對重要性為許多研究領域關心的議題,找出重要變數有助於解釋模型以及模型之後續應用。本研究將回顧不同的衡量變數重要性的指標,包含簡單指標以及變異數分解指標兩大類。當中簡單指標受限於解釋變數間的相關性而容易有錯誤解讀,但仍可作為變數重要性排序的參考依據 (Nathans et al., 2012)。變異數分解的指標則能將全模型 (Full Model) 之 R2 分解成多個非負值,此量化了每個解釋變數對於全模型的貢獻,意義明確且容易比較,因此本研究著重於變異數分解指標並以簡單指標作為輔助。變異數分解的指標共有 4 種,分別為Lindeman,Merenda, & Gold (1980) 提出的 Lindeman, Merenda and Gold (LMG) 指標、Feldman (2005)提出的比例邊際變異分解 (Proportional Marginal Variance Decomposition, PMVD) 指標、Budescu (1993) 提出的優勢分析 (Dominance Analysis) 以及Johnson (2000) 提出的 Epsilon指標。以上四種指標使用不同觀點來衡量解釋變數對於全模型的貢獻,因此這些指標所衡量出的變數重要性排序往往並不完全相同,因為當解釋變數彼此相關時,變數對於模型的貢獻可分為獨特貢獻與因相關而引起的聯合貢獻,能夠影響變數貢獻的原因較複雜且廣泛。因此本研究旨在探討當變異數分解指標的重要性排序結果出現分歧時,是否可以利用簡單指標或多種統計方法和工具作為輔助,以辨別哪種指標的重要性排序結果較為合理,或者能夠綜合這些指標的結果,得出哪些變數實際上具有相同的重要性。
    參考文獻: Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in
    multiple regression. Psychological methods, 8(2), 129-148.
    Budescu, D. V. (1993). Dominance analysis: a new approach to the problem of relative importance
    of predictors in multiple regression. Psychological bulletin, 114(3), 542-551.
    Budescu, D. V., & Azen, R. (2004). Beyond global measures of relative importance: Some insights
    from dominance analysis. Organizational Research Methods, 7(3), 341–350.
    Deng, K., Han, S., Li, K. J., & Liu, J. S. (2014). Bayesian aggregation of order-based rank data.
    Journal of the American Statistical Association, 109(507), 1023–1039.
    Derryberry, D., Aho, K., Edwards, J., & Peterson, T. (2018). Model selection and regression tstatistics. The American Statistician, 72(4), 379–381.
    Feldman, B. E. (2005). Relative importance and value. Available at SSRN 2255827.
    Freedman, D. A. (1981). Bootstrapping regression models. The annals of statistics, 9(6), 1218–1228.
    Friedman, L., & Wall, M. (2005). Graphical views of suppression and multicollinearity in multiple
    linear regression. The American Statistician, 59(2), 127–136.
    Grömping, U. (2007a). Estimators of relative importance in linear regression based on variance
    decomposition. The American Statistician, 61(2), 139–147.
    Grömping, U. (2007b). Relative importance for linear regression in r: the package relaimpo. Journal
    of statistical software, 17, 1–27.
    Grömping, U. (2015). Variable importance in regression models. Wiley interdisciplinary reviews:
    Computational statistics, 7(2), 137–152.
    John, F. (2008). Bootstrapping regression models. Applied Regression Analysis and Generalized
    Linear Models, Thousand Oaks (CA), Sage, 587–606.
    Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in
    multiple regression. Multivariate behavioral research, 35(1), 1–19.
    Johnson, J. W., & LeBreton, J. M. (2004). History and use of relative importance indices in organizational research. Organizational research methods, 7(3), 238–257.
    Lebreton, J. M., Ployhart, R. E., & Ladd, R. T. (2004). A monte carlo comparison of relative importance methodologies. Organizational Research Methods, 7(3), 258–282.
    Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate
    analysis (Vol. 4). Scott, Foresman Glenview, IL.
    Nathans, L. L., Oswald, F. L., & Nimon, K. (2012). Interpreting multiple linear regression: a guidebook of variable importance. Practical assessment, research & evaluation, 17(9), n9.
    Pratt, J. W. (1987). Dividing the indivisible: Using simple symmetry to partition variance explained.
    In Proceedings of the second international tampere conference in statistics, 1987 (pp. 245–260).
    Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to
    regression analysis. Journal of Business and Psychology, 26, 1–9.
    Wei, P., Lu, Z., & Song, J. (2015). Variable importance analysis: A comprehensive review. Reliability
    Engineering & System Safety, 142, 399–432.
    Weisberg, S. (2005). Applied linear regression (Vol. 528). John Wiley & Sons.
    描述: 碩士
    國立政治大學
    統計學系
    111354001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111354001
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    400101.pdf3926KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋