Reference: | Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological methods, 8(2), 129-148. Budescu, D. V. (1993). Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychological bulletin, 114(3), 542-551. Budescu, D. V., & Azen, R. (2004). Beyond global measures of relative importance: Some insights from dominance analysis. Organizational Research Methods, 7(3), 341–350. Deng, K., Han, S., Li, K. J., & Liu, J. S. (2014). Bayesian aggregation of order-based rank data. Journal of the American Statistical Association, 109(507), 1023–1039. Derryberry, D., Aho, K., Edwards, J., & Peterson, T. (2018). Model selection and regression tstatistics. The American Statistician, 72(4), 379–381. Feldman, B. E. (2005). Relative importance and value. Available at SSRN 2255827. Freedman, D. A. (1981). Bootstrapping regression models. The annals of statistics, 9(6), 1218–1228. Friedman, L., & Wall, M. (2005). Graphical views of suppression and multicollinearity in multiple linear regression. The American Statistician, 59(2), 127–136. Grömping, U. (2007a). Estimators of relative importance in linear regression based on variance decomposition. The American Statistician, 61(2), 139–147. Grömping, U. (2007b). Relative importance for linear regression in r: the package relaimpo. Journal of statistical software, 17, 1–27. Grömping, U. (2015). Variable importance in regression models. Wiley interdisciplinary reviews: Computational statistics, 7(2), 137–152. John, F. (2008). Bootstrapping regression models. Applied Regression Analysis and Generalized Linear Models, Thousand Oaks (CA), Sage, 587–606. Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate behavioral research, 35(1), 1–19. Johnson, J. W., & LeBreton, J. M. (2004). History and use of relative importance indices in organizational research. Organizational research methods, 7(3), 238–257. Lebreton, J. M., Ployhart, R. E., & Ladd, R. T. (2004). A monte carlo comparison of relative importance methodologies. Organizational Research Methods, 7(3), 258–282. Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis (Vol. 4). Scott, Foresman Glenview, IL. Nathans, L. L., Oswald, F. L., & Nimon, K. (2012). Interpreting multiple linear regression: a guidebook of variable importance. Practical assessment, research & evaluation, 17(9), n9. Pratt, J. W. (1987). Dividing the indivisible: Using simple symmetry to partition variance explained. In Proceedings of the second international tampere conference in statistics, 1987 (pp. 245–260). Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to regression analysis. Journal of Business and Psychology, 26, 1–9. Wei, P., Lu, Z., & Song, J. (2015). Variable importance analysis: A comprehensive review. Reliability Engineering & System Safety, 142, 399–432. Weisberg, S. (2005). Applied linear regression (Vol. 528). John Wiley & Sons. |