English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52558316      Online Users : 1016
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/152472
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152472


    Title: SOFR期貨及期貨選擇權的定價與實證分析:Hull-White雙因子模型與單因子模型比較
    Pricing and Empirical Analysis of SOFR Futures and Futures Options: Hull-White Two-Factor vs. One-Factor Models
    Authors: 陳昆旻
    Chen, Kun-Min
    Contributors: 林士貴
    Lin, Shih-Kuei
    陳昆旻
    Chen, Kun-Min
    Keywords: SOFR 期貨
    SOFR 期貨選擇權
    Hull-White 雙因子模型
    SOFR futures
    SOFR futures options
    Hull-White two-factor model
    Date: 2024
    Issue Date: 2024-08-05 12:18:44 (UTC+8)
    Abstract: 自2017年美國替代參考利率委員會(ARRC)推薦SOFR作為美元LIBOR的替代利率以來,持續努力發展SOFR衍生性商品市場。如今,CME的SOFR期貨和期貨選擇權已成為SOFR市場上流動性最好的商品之一。本研究擴展了廣泛使用的Hull-White模型,評估了單因子和雙因子模型對SOFR期貨(線性產品)和期貨選擇權(非線性產品)定價的適用性和表現。在SOFR期貨的實證分析中,我們運用了如RMSRE、RMSE、AIC及BIC等衡量指標,並結合校準誤差來評估兩種模型。結果發現,單因子模型足以適應SOFR期貨市場的需求。對於期貨選擇權,我們最初通過蒙地卡羅模擬驗證了本文推導的(半)解析定價公式。隨後進行模型參數對波動度期限結構的敏感度分析,讓我們進一步了解不同參數對SOFR期貨選擇權波動度的影響。最後,我們發現雙因子模型在常數參數下,相較於單因子模型,更有效地捕捉了SOFR期貨選擇權的波動度期限結構。
    Since the ARRC recommended SOFR as the alternative reference rate to USD LIBOR in 2017, efforts have been made to develop the SOFR derivatives market. Today, CME's SOFR futures and options are among the most liquid in the SOFR market. This study extends the widely used Hull-White model to assess both one-factor and two-factor models for pricing SOFR futures (linear products) and futures options (non-linear products). In our empirical analysis of SOFR futures, we utilized metrics such as RMSRE, RMSE, AIC, and BIC, alongside calibration errors, to evaluate the two models. The one-factor model proved adequate for the SOFR futures market. For SOFR futures options, we initially validated the (semi-)analytical pricing formulas through Monte Carlo simulation. We then conducted a sensitivity analysis of model parameters on the volatility term structure, further understanding their impact on SOFR futures options volatility. Lastly, we found that the two-factor model with constant parameters, more effectively captures the volatility term structure of SOFR futures options compared to the one-factor model.
    Reference: Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3(1-2), 167–179.
    Black, F., & Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts Journal, 47(4), 52–59.
    Brace, A., Gellert, K., & Schlögl, E. (2024). SOFR term structure dynamics—discontinuous short rates and stochastic volatility forward rates. Journal of Futures Markets, 44(6), 936–985.
    Brigo, D., & Mercurio, F. (2006). Interest rate models-theory and practice: with smile, inflation and credit, volume 2. Springer.
    Chen, R.-R., & Scott, L. (1993). Pricing interest rate futures options with futures-style margining. Journal of Futures Markets, 13(1).
    Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385–408.
    Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), 1343–1376.
    Flesaker, B. (1993). Testing the Heath-Jarrow-Morton/Ho-Lee model of interest rate contingent claims pricing. Journal of Financial and Quantitative Analysis, 28(4), 483–495.
    Gurrieri, S., Nakabayashi, M., & Wong, T. (2009). Calibration methods of Hull-White model. Available at SSRN 1514192.
    Hasegawa, T. (2021). Caplet formulae for backward-looking term rates with hull-white model. Available at SSRN 3909949.
    Heitfield, E. & Park, Y.-H. (2019). Inferring term rates from SOFR futures prices. Available at SSRN 3134346.
    Henrard, M. (2018). Overnight futures: Convexity adjustment. Available at SSRN 3134346.
    Henrard, M. (2022). Options on overnight futures. Model Development, muRisQ Advisory, March.
    Henrard, M. P. (2019). Libor fallback and quantitative finance. Risks, 7(3), 88.
    Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.
    Ho, T. S., & Lee, S.-B. (1986). Term structure movements and pricing interest rate contingent claims. The Journal of Finance, 41(5), 1011–1029.
    Hofmann, K. F. (2020). Implied volatilities for options on backward-looking term rates. Available at SSRN 3593284.
    Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4), 573–592.
    Hull, J., & White, A. (1994). Numerical procedures for implementing term structure models I: Single-factor models. Journal of Derivatives, 2(1), 7–16.
    Hunt, P., & Kennedy, J. (2004). Financial derivatives in theory and practice, volume 556. John Wiley and Sons.
    Lyashenko, A., & Mercurio, F. (2019). Looking forward to backward-looking rates: a modeling framework for term rates replacing LIBOR. Available at SSRN 3330240.
    Mercurio, F. (2018). A simple multi-curve model for pricing SOFR futures and other derivatives. Available at SSRN 3225872.
    Russo, V., & Fabozzi, F. J. (2023). Caplets/floorlets with backward-looking risk-free rates under the one-and two-factor Hull-White models. Journal of Derivatives, 31(1).
    Russo, V., & Torri, G. (2019). Calibration of one-factor and two-factor Hull–White models using swaptions. Computational Management Science, 16(1), 275–295.
    Schlögl, E., Skov, J. B., & Skovmand, D. (2023). Term structure modeling of SOFR: Evaluating the importance of scheduled jumps. Available at SSRN 4431839.
    Skov, J. B., & Skovmand, D. (2021). Dynamic term structure models for SOFR futures. Journal of Futures Markets, 41(10), 1520–1544.
    Turfus, C. (2020). Risky caplet pricing with backward-looking rates. Available at SSRN 3713880.
    Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2), 177–188.
    Description: 碩士
    國立政治大學
    金融學系
    111352032
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111352032
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    203201.pdf1359KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback