政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152051
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52137454      Online Users : 661
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152051


    Title: 基於卷積神經網路之型態與橫斷面股票報酬率
    Image Pattern Based on Convolutional Neural Network and Cross-Sectional Stock Return
    Authors: 鄧昱辰
    Den, Yu-Chen
    Contributors: 羅秉政
    Kendro Vincent
    鄧昱辰
    Den, Yu-Chen
    Keywords: 卷積神經網路
    股票價格型態
    橫斷面報酬預測
    技術分析
    Convolutional neural network
    Stock chart pattern
    Cross-sectional return predictability
    Technical analysis
    Date: 2024
    Issue Date: 2024-07-01 12:34:20 (UTC+8)
    Abstract: 本論文探討使用卷積神經網路(CNN)應用於由股價和成交量生 成的影像,來預測股票報酬率的可能性。我們採用多類別分類模型預 測股票報酬,其表現優於二元分類模型。此外,我們的研究還考慮了 不同股票型態的可預測性,發現小市值股票通常較大市值股票具有較 高的年度夏普比率和更顯著的月超額報酬。我們的研究成果強調在股 票報酬預測中,考慮橫截斷效應和股票型態異質性的重要性,為投資 者和研究人員提供了新的見解。
    This paper investigates the predictability of stock returns using Convolutional Neural Networks (CNNs) apply to images generated from stock prices and volumes. We employ multi-class classification models to predict stock returns that outperform binary classification models. Additionally, our study examines the predictability of different stock styles, revealing that small-capital stocks generally exhibit higher annual Sharpe ratios and more pronounced monthly excess returns than large-capital stocks. Our findings underscore the importance of considering cross-sectional effects and stock style heterogeneity in stock return predictions, providing valuable insights for investors and researchers alike.
    Reference: Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063.
    Avramov, D., Cheng, S., and Metzker, L. (2023). Machine learning vs. economic restric- tions: Evidence from stock return predictability. Management Science, 69(5):2587– 2619.
    Bajgrowicz, P. and Scaillet, O. (2012). Technical trading revisited: False discoveries, persistence tests, and transaction costs. Journal of Financial Economics, 106(3):473– 491.
    Banz, R. W. (1981). The relationship between return and market value of common stocks. Journal of financial economics, 9(1):3–18.
    Barndorff-Nielsen, O. E. and Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(2):253–280.
    Bianchi, D., Büchner, M., and Tamoni, A. (2021). Bond risk premiums with machine learning. The Review of Financial Studies, 34(2):1046–1089.
    Caporin, M., Ranaldo, A., and De Magistris, P. S. (2013). On the predictability of stock prices: A case for high and low prices. Journal of Banking & Finance, 37(12):5132– 5146.
    Chen, L., Pelger, M., and Zhu, J. (2023). Deep learning in asset pricing. Management Science.
    Chuang, C. and Yang, Y. (2022). Buy tesla, sell ford: Assessing implicit stock market preference in pre-trained language models. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 100– 105.
    Cooper, M. J., Gulen, H., and Schill, M. J. (2008). Asset growth and the cross-section of stock returns. the Journal of Finance, 63(4):1609–1651.
    Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2):174–196.
    51
    Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
    Dwivedi, R., Singh, C., Yu, B., and Wainwright, M. (2023). Revisiting minimum descrip- tion length complexity in overparameterized models. Journal of Machine Learning Research, 24(268):1–59.
    Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1):3–56.
    Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1):1–22.
    Giglio, S., Kelly, B., and Xiu, D. (2022). Factor models, machine learning, and asset pricing. Annual Review of Financial Economics, 14:337–368.
    Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor- ward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings.
    Gu, S., Kelly, B., and Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5):2223–2273.
    Guo, Y., Xu, Z., and Yang, Y. (2023). Is chatgpt a financial expert? evaluating language models on financial natural language processing. arXiv preprint arXiv:2310.12664.
    Han, Y., Zhou, G., and Zhu, Y. (2016). A trend factor: Any economic gains from using information over investment horizons? Journal of Financial Economics, 122(2):352– 375.
    Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, pages 448–456. PMLR.
    Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: Im- plications for stock market efficiency. The Journal of finance, 48(1):65–91.
    Jiang, J., Kelly, B., and Xiu, D. (2023). (Re-) imag (in) ing price trends. Journal of Finance, 78(6):3193–3249.
    Kaczmarek, T. and Pukthuanthong, K. (2023). Animating stock markets. Working paper.
    Kelly, B. T., Malamud, S., and Zhou, K. (2022). The virtue of complexity everywhere. Available at SSRN.
    52

    LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/.
    LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995.
    LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.
    Li, J., Wang, D., and Zhang, Q. (2022). Reading the candlesticks: An ok estimator for volatility. Review of Economics and Statistics, pages 1–45.
    Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10012–10022.
    Makrehchi, M., Shah, S., and Liao, W. (2013). Stock prediction using event-based sen- timent analysis. In 2013 IEEE/WIC/ACM International Joint Conferences on Web In- telligence (WI) and Intelligent Agent Technologies (IAT), volume 1, pages 337–342. IEEE.
    Marquering, W. and Verbeek, M. (2004). The economic value of predicting stock index returns and volatility. Journal of Financial and Quantitative Analysis, 39(2):407–429.
    Murray, S., Xia, Y., and Xiao, H. (2024). Charting by machines. Journal of Financial Economics, 153:103791.
    Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814.
    Nijman, T., Swinkels, L., and Verbeek, M. (2004). Do countries or industries explain momentum in europe? Journal of Empirical Finance, 11(4):461–481.
    Novy-Marx, R. (2013). The other side of value: The gross profitability premium. Journal of financial economics, 108(1):1–28.
    Obaid, K. and Pukthuanthong, K. (2022). A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news. Journal of Financial Economics, 144(1):273–297.
    Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151.
    Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. In International conference on machine learning, pages 8748– 8763. PMLR.
    53

    Rosenberg, B., Reid, K., and Lanstein, R. (1985). Persuasive evidence of market ineffi- ciency. Journal of portfolio management, 11(3):9–16.
    Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
    Rytchkov, O. (2010). Expected returns on value, growth, and hml. Journal of Empirical Finance, 17(4):552–565.
    Shynkevich, A. (2012). Short-term predictability of equity returns along two style dimen- sions. Journal of Empirical Finance, 19(5):675–685.
    Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017). Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958.
    Sullivan, R., Timmermann, A., and White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. Journal of Finance, 54(5):1647–1691.
    Sun, L., Najand, M., and Shen, J. (2016). Stock return predictability and investor senti- ment: A high-frequency perspective. Journal of Banking & Finance, 73:147–164.
    Wang, Y., Liu, L., Ma, F., and Diao, X. (2018). Momentum of return predictability. Journal of Empirical Finance, 45:141–156.
    Xu, J., Li, Z., Du, B., Zhang, M., and Liu, J. (2020). Reluplex made more practical: Leaky relu. In 2020 IEEE Symposium on Computers and communications (ISCC), pages 1–7. IEEE.
    Description: 碩士
    國立政治大學
    金融學系
    111352027
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111352027
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    202701.pdf5044KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback