政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/151656
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51629264      在线人数 : 522
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 專書/專書篇章 >  Item 140.119/151656


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/151656


    题名: Optimizing Portfolios with ESG, Dividends, and Volatility Factors via Machine Learning
    作者: 張興華
    Chang, Hsing-Hua;Lai, Chen-Hsin;Lin, Kuen-Liang;Lin, Shih-Kuei
    贡献者: 金融系
    日期: 2024-04
    上传时间: 2024-06-12 14:00:05 (UTC+8)
    摘要: Factor investment is booming in global asset management, especially environmental, social, and governance (ESG), dividend yield, and volatility factors. In this chapter, we use data from the US securities market from 2003 to 2019 to predict dividends and volatility factors through machine learning and historical data–based methods. After that, we utilize particle swarm optimization to construct the Markowitz portfolio with limits on the number of assets and weight restrictions. The empirical results show that that the prediction ability using XGBoost is superior to the historical factor investment method. Moreover, the investment performance of our portfolio with ESG, high-yield, and low-volatility factors outperforms baseline methods, especially the S&P 500 ETF.
    關聯: Advances in Pacific Basin Business, Economics and Finance, Vol.12, pp.193-214
    数据类型: book/chapter
    ISBN: 9781837538652
    DOI 連結: https://doi.org/10.1108/S2514-465020240000012008
    DOI: 10.1108/S2514-465020240000012008
    显示于类别:[金融學系] 專書/專書篇章

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML123检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈