English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51872573      Online Users : 257
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/151538
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/151538


    Title: 應用深度學習於臺灣國產啤酒之銷售預測
    Using Deep Learning on the Sales Forecasting of Taiwan’s Domestic Beer
    Authors: 張祐嘉
    Chang, Yu-Chia
    Contributors: 鄭宇庭
    Cheng, Yu-Ting
    張祐嘉
    Chang, Yu-Chia
    Keywords: 時間序列
    銷售預測
    ARIMA
    LSTM
    Date: 2024
    Issue Date: 2024-06-03 11:54:33 (UTC+8)
    Abstract: 本研究使用自迴歸移動平均模型及長短期記憶神經網路模型進行預測,以預測我國國產啤酒銷售量,我國自民國91年加入WTO並取消菸酒專賣制度,轉而採用課徵菸酒稅及關稅之方式,導致國內啤酒進口量逐年增加,進而使得國產啤酒面臨激烈的市場競爭,其市場銷量的國產啤酒占比在20年內,大幅下降。由於啤酒銷量的波動受季節性、政策、經濟等因素影響,因此本研究建立國產啤酒銷售預測模型,藉由探討對於國產啤酒銷量預測之重要因素,以提高模型的預測能力,進而幫助本國企業優化生產及庫存管理,以制定市場推廣及銷售策略。
    本研究採用ARIMA模型及LSTM模型以預測國產啤酒銷量,並探討使用國內生產毛額、內銷品酒類物價指數以及台北市平均溫度作為外部變數,對於模型的預測能力的影響。而研究中使用2002年至2015年的各月數據建立模型,並使用2016年至2022年的各月數據進行實證分析,並使用RMSE、MAPE及R2作為模型的預測能力評估標準。
    研究結果顯示,同時使用國內生產毛額、內銷品酒類物價指數作為外部變數的LSTM模型預測能力表現最佳,其RMSE及MAPE最低、R2最高(88.39%)。然而,使用臺北市月平均溫度作為外部變數的LSTM模型表現相對較差。此外,SARIMA模型深受特殊事件影響,若排除特殊事件,其預測能力與單變量LSTM模型相近。
    最後,於未來研究中應更全面選擇外部變數以提高模型之預測能力,並考慮更完善之地理區域的氣象變化以更準確判斷氣象對於模型之影響能力。此外,由於特殊事件會影響模型的預測能力,因此應更謹慎選擇模型。
    Reference: 一、中文文獻
    1.柯朝斌(2011)。台灣啤酒市場概況暨進口啤酒選擇因素之研究. 餐旅暨家政學刊, 8(1), 1-19.
    2.紀世訓(1995)。時間數列模式與神經網路在長壽捲菸銷量預測之應用. 空大行政學報 4, 1995, 335-368。
    3.陳宇勛(2020)。建構季節性產品之銷售預測模式:以18天生啤酒為例。國立交通大學管理學院運輸物流學程碩士論文。
    4.廖子儀(2018)。原物料商品價格之預測-以ARIMA模型分析。國立高雄應用科技大學國際企業研究所碩士論文。
    二、外文文獻
    1.Ahnaf, M. S., Kurniawati, A., & Anggana, H. D. (2021, September). Fore-casting pet food item stock using arima and lstm. In 2021 4th Interna-tional Conference of Computer and Informatics Engineering (IC2IE) (pp. 141-146). IEEE.
    2.Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019). Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part III 26 (pp. 462-474). Springer International Publishing.
    3.Bratina, D., & Faganel, A. (2008). Forecasting the primary demand for a beer brand using time series analysis. Organizacija, 41(3).
    4.Dai, Y., & Huang, J. (2021, February). A sales prediction method based on lstm with hyper-parameter search. In Journal of Physics: Conference Se-ries (Vol. 1756, No. 1, p. 012015). IOP Publishing.
    5.Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia exports using a hybrid model ARIMA-LSTM. Procedia Com-puter Science, 179, 480-487.
    6.Elmasdotter, A., & Nyströmer, C. (2018). A comparative study between LSTM and ARIMA for sales forecasting in retail.
    7.Evans, S. (2020). The Effects of Weather Variance on Local Beer Sales.
    8.Fredén, D., & Larsson, H. (2020). Forecasting daily supermarkets sales with machine learning.
    9.Hong, J. K. (2021). LSTM-based Sales Forecasting Model. KSII Transac-tions on Internet & Information Systems, 15(4).
    10.Kamdem, J. S., Essomba, R. B., & Berinyuy, J. N. (2020). Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities. Chaos, Solitons & Fractals, 140, 110215.
    11.Lewis, C. D. (1982). Industrial and business forecasting methods: A prac-tical guide to exponential smoothing and curve fitting.
    12.Mehtab, S., & Sen, J. (2020). A time series analysis-based stock price prediction using machine learning and deep learning models. Internation-al Journal of Business Forecasting and Marketing Intelligence, 6(4), 272-335.
    13.Nikolopoulos, K., & Fildes, R. (2013). Adjusting supply chain forecasts for short-term temperature estimates: a case study in a Brewing company. IMA Journal of Management Mathematics, 24(1), 79-88.
    14.Olah, C. (2015). Understanding lstm networks.
    15.Palkar, A., Deshpande, M., Kalekar, S., & Jaswal, S. (2020, July). Demand Forecasting in Retail Industry for Liquor Consumption using LSTM. In 2020 International Conference on Electronics and Sustainable Communi-cation Systems (ICESC) (pp. 521-525). IEEE.
    16.Ramachandran, K. K. Prediction supermarket sales with big data analyt-ics : A comparative study if machine learning techniques. Journal ID, 6202, 8020.
    17.Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive deep learning system. Journal of big Data, 7(1), 1-33.
    18.Siami-Namini, S., & Namin, A. S. (2018). Forecasting economics and fi-nancial time series: ARIMA vs. LSTM. arXiv preprint arXiv:1803.06386.
    19.Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). A comparative analysis of forecasting financial time series using arima, lstm, and bilstm. arXiv preprint arXiv:1911.09512.
    20.Vavliakis, K. N., Siailis, A., & Symeonidis, A. L. (2021). Optimizing Sales Forecasting in e-Commerce with ARIMA and LSTM Models. In WEBIST (pp. 299-306).
    Description: 碩士
    國立政治大學
    統計學系
    111354023
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354023
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402301.pdf2871KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - Feedback