English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52067950      Online Users : 773
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/151537
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/151537


    Title: 基於機器學習預測中古車車價之應用
    Application of predicting used car prices based on machine learning
    Authors: 林侃瑩
    Lin, Kan-Ying
    Contributors: 鄭宇庭
    Cheng, Yu-Ting
    林侃瑩
    Lin, Kan-Ying
    Keywords: 中古車價預測
    機器學習
    集成學習
    Date: 2024
    Issue Date: 2024-06-03 11:54:20 (UTC+8)
    Abstract: 台灣地區的中古車價格預估主要依賴專家的主觀判斷,這種方式存在一些缺點,包括耗費大量人力資源、資訊不對稱等問題。因此,本研究旨在探索機器學習方法,以提高中古車價格的預測準確性。此外,我們還研究了中古車價格的重要變數,以提供中古車市場決策之依據。
    本研究使用abc好車網(https://www.abccar.com.tw/)提供的中古車資料,包括廠牌、車款、里程數、出廠時間、燃料、排氣、顏色、變速系統、傳動系統、座位數、駕駛配備、內裝配備、安全配備、外觀配備以及價格等。我們採用不同的機器學習模型,包括決策樹、支持向量機、類神經網路和集成學習方法,以確定最適合的模型來預測中古車價格。
    我們進行不同降維方式包括主成分分析(PCA)降維、LASSO變數篩選和特徵值重要性分析等不同特徵選擇方法。結果顯示,使用LASSO變數篩選方法的模型表現優於其他方法,證明了LASSO的有效性。此外,我們分析了中古車價格預測的重要變數,包括車款、車齡和排氣量等因素對價格預測的影響。這些因素通常是消費者在選擇中古車時關注的主要考慮因素。此外,廠商、里程數、座位數、傳動系統和手自排變速系統等因素也對價格預測有重要影響。
    最後在不同模型和方法的比較,建議使用Light GBM和Hist Gradient Boosting這兩種模型,因為它們在整體性能上表現出色,同時在實際計算中也能夠維持較高的效率。
    總結來說,這項研究進行了多種模型和方法的比較,以找出最適合預測中古車價格的方式。我們的研究強調了模型選擇對預測性能的關鍵性作用。我們期望這些研究結果能夠為中古車市場相關的決策制定和價格預測提供有價值的參考依據。
    Reference: 英文參考文獻
    1.Asghar, M., K. Mehmood, S. Yasin & Z. M. Khan (2021). Used cars price prediction using machine learning with optimal features. Pakistan Journal of Engineering and Technology, 4(2), 113-119.
    2.Breiman, L., J. H. Friedman, R. A. Olshen & C. J. Stone (1984). Classification and regression trees (Wadsworth, Belmont, CA). ISBN-13, 978-0412048418.
    3.Hesterberg, T., N. H. Choi, L. Meier & C. Fraley(2008). Least angle and ℓ 1 penalized regression: A review. Statistics Surveys, Statist. Surv., 61-93.
    4.McCulloch, W. S. & W. Pitts(1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics,5, 115-133.
    5.Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
    6.Monburinon, N., P. Chertchom, T. Kaewkiriya, S. Rungpheung, S. Buya & P. Boonpou(2018). Prediction of prices for used car by using regression models. In 2018 5th International Conference on Business and Industrial Research (ICBIR) , 115-119. IEEE.
    7.Narayana, C. V., C. L. Likhitha, S. Bademiya & K. Kusumanjali(2021). Machine learning techniques to predict the price of used cars: predictive analytics in retail business. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) , 1680-1687. IEEE.
    8.Noor, K. & S. Jan (2017). Vehicle price prediction system using machine learning techniques. International Journal of Computer Applications, 167(9), 27-31.
    9.Pudaruth, S. (2014). Predicting the price of used cars using machine learning techniques. Int. J. Inf. Comput. Technol, 4(7), 753-764..
    10.Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
    11.Samruddhi, K. & R. A. Kumar (2020). Used car price prediction using k-nearest neighbor based model. Int. J. Innov. Res. Appl. Sci. Eng.(IJIRASE), 4, 629-632.
    12.Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197-227.
    13.Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.
    14.Waldmann, P., G. Mészáros, B. Gredler, C. Fuerst & J. Sölkner(2013). Evaluation of the lasso and the elastic net in genome-wide association studies. Frontiers in genetics,4, 270.
    15.Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259.
    網站部分
    16.(N.d.). 交通部公路總局 統計查詢網. https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=defjsp
    17.Cozzi, L., & Petropoulos, A. (2021). Global SUV Sales Set Another Record in 2021, Setting Back Efforts to Reduce Emissions. Iea. https://www.iea.org/commentaries/global-suv-sales-set-another-record-in-2021-setting-back-efforts-to-reduce-emissions
    18.Factors That Impact The Value of Your Car. (n.d.). CARCHASE. https://carchase.com.au/resources/car-valuation-guide/9-factors-that-impact-the-value-of-your-car/
    Description: 碩士
    國立政治大學
    統計學系
    111354008
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354008
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400801.pdf2480KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback