政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/150122
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52045257      在线人数 : 507
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/150122


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/150122


    题名: 選擇權價格對期貨報酬的資訊內涵
    The information content of option prices on futures returns: Evidence from Taiwan Derivatives Market
    作者: 施冠宇
    Shih, Guan-Yu
    贡献者: 陳威光
    羅秉政

    Chen, Wei‑Kuang
    Kendro Vincent

    施冠宇
    Shih, Guan-Yu
    关键词: 期貨報酬
    具有方向性台灣VIX指標
    選擇權策略
    LASSO
    Ridge
    Futures Returns
    Directional Taiwan VIX
    Option Strategies
    LASSO Regression
    Ridge Regression
    日期: 2024
    上传时间: 2024-03-01 12:34:35 (UTC+8)
    摘要: 本研究採用了包括回歸分析、時間序列分析以及機器學習方法,深入探討了台灣衍生性商品市場中選擇權價格與期貨報酬之間的資訊內涵。首先就預測因子而言,研究結果顯示,具有方向性台灣VIX指標因子在預測能力上優於傳統的VIX恐慌指數和大多數選擇權策略因子。再來,雖然大部分的選擇權策略因子對於期貨報酬的預測能力不顯著,但是當它們與具方向性台灣VIX指標因子同時考量時,可以在多變量回歸模型中發揮綜效。
    此外就多變量回歸模型而言,Ridge的整體預測能力表現最為出色,因為透過降低模型複雜度,使模型能夠適應各個主要的多頭市場。LASSO雖然在整體的預測能力表現略遜一籌,但是在特定的極端市場情況,如空頭市場中的表現相對較佳。最後,在2012至2023年的樣本期間可以發現,使用部分的選擇權策略因子來對台灣股價指數期貨建構均值-變異數最佳化的投資組合,可以獲得較高的夏普值。
    This study employed various methods including regression analysis, time series analysis, and machine learning to deeply explore the information content of option prices on futures returns in the Taiwanese derivatives market. Firstly, regarding predictors, the results show that the Directional Taiwan VIX predictors has superior predictability compared to the traditional VIX and most option strategies predictors. Furthermore, although the majority of the option strategies predictors are not significantly predictive of futures returns, they demonstrate a synergistic effect in multivariate regression models when considered alongside the Directional Taiwan VIX predictors.
    In terms of multivariate regression models, Ridge regression demonstrates superior overall predictive capabilities, as it reduces model complexity, enabling the model to adapt to various major bull markets. Although LASSO regression slightly lags in overall predictive ability, it performs relatively better in certain extreme market conditions, such as bear markets. Finally, during the sample period from 2012 to 2023, it is observed that using certain option strategy predictors to construct a mean-variance optimized investment portfolio for Taiwan stock index futures can achieve a higher Sharpe ratio.
    參考文獻: 林俊良 (Lin, C.-L., Lin, C.-L., & 廖四郎. (2023). 具有方向性台灣VIX指標之建構與實證 = Construction and Empirical Testing of Directional Taiwan Volatility Index / 林俊良撰. 林俊良.
    Aggarwal, N., & Gupta, M. (2013). Portfolio hedging through options: Covered call versus protective put. Journal of Management Research, 13(2), 118-126.
    Alexandridis, A. K., Apergis, I., Panopoulou, E., & Voukelatos, N. (2023). Futures return prediction: The role of information from the options market. Journal of Financial Markets, 64, 100801.
    Aljasimee, M., & Alhamzawi, R. (2023). The lasso and rlasso: A Comparative study. Utilitas Mathematica, 120, 113-129.
    Alpsten, G., & Samanci, S. (2018). Portfolio Protection Strategies: A study on the protective put and its extensions.
    Amaya, D., Christoffersen, P., Jacobs, K., & Vasquez, A. (2015). Does realized skewness predict the cross-section of equity returns?. Journal of Financial Economics, 118(1), 135-167.
    Atilgan, Y., Bali, T. G., & Demirtas, K. O. (2015). Implied volatility spreads and expected market returns. Journal of Business & Economic Statistics, 33(1), 87-101.
    Avanijaa, J. (2021). Prediction of house price using xgboost regression algorithm. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 2151-2155.
    Bali, T. G., & Hovakimian, A. (2009). Volatility spreads and expected stock returns. Management Science, 55(11), 1797-1812.
    Bevilacqua, M., Morelli, D., & Tunaru, R. (2019). The determinants of the model-free positive and negative volatilities. Journal of International Money and Finance, 92, 1-24.
    Bevilacqua, M., Morelli, D., & Uzan, P. S. R. (2020). Asymmetric implied market volatility and terrorist attacks. International Review of Financial Analysis, 67, 101417.
    Bollerslev, T., Marrone, J., Xu, L., & Zhou, H. (2014). Stock return predictability and variance risk premia: Statistical inference and international evidence. Journal of Financial and Quantitative Analysis, 49(3), 633-661.
    Bollerslev, T., Hood, B., Huss, J., & Pedersen, L. H. (2018). Risk everywhere: Modeling and managing volatility. The Review of Financial Studies, 31(7), 2729-2773.
    Bondarenko, O. (2014). Why are put options so expensive?. The Quarterly Journal of Finance, 4(03), 1450015.
    Buss, A., Schönleber, L., & Vilkov, G. (2016). Option-implied correlations, factor models, and market risk.
    Buss, A., Schönleber, L., & Vilkov, G. (2019). Expected correlation and future market returns. Available at SSRN 3114063.
    Brooks, R., Chance, D., & Hemler, M. (2019). The “Superior Performance” of Covered Calls on the S&P 500: Rethinking an Anomaly. The Journal of Derivatives, 27(2), 50-61.
    Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average?. The Review of Financial Studies, 21(4), 1509-1531.
    Cao, C., Simin, T., & Xiao, H. (2020). Predicting the futures return with the implied volatility spread. Journal of Financial Markets, 51, 100531.
    Carr, P. (2017). Why is VIX a Fear Gauge? Risk and Decision Analysis 6(2), 179-185.
    CBOE, (2009). The CBOE Volatility Index- VIX, White Paper.
    Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
    Chordia, T., Lin, T. C., & Xiang, V. (2021). Risk-neutral skewness, informed trading, and the cross section of stock returns. Journal of Financial and Quantitative Analysis, 56(5), 1713-1737.
    Christoffersen, P., Jacobs, K., & Chang, B. Y. (2013). Forecasting with option-implied information. Handbook of economic forecasting, 2, 581-656.
    Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of econometrics, 138(1), 291-311.
    Colacito, R., Ghysels, E., Meng, J., & Siwasarit, W. (2016). Skewness in expected macro fundamentals and the predictability of equity returns: Evidence and theory. The Review of Financial Studies, 29(8), 2069-2109.
    De Giuli, M. E., Montagna, D., Naldi, F., Tanda, A., Generali, T., & Tanda, A. (2019). Enhance and Protect Portfolio Returns: A Dynamic Put Spread Optimization. International Journal of Economics and Finance, 11(12), 1-66.
    DeLisle, R. J., Diavatopoulos, D., Fodor, A., & Kassa, H. (2022). Variation in option implied volatility spread and future stock returns. The Quarterly Review of Economics and Finance, 83, 152-160.
    Dichtl, H., Drobetz, W., Neuhierl, A., & Wendt, V. S. (2021). Data snooping in futures return prediction. International Journal of Forecasting, 37(1), 72-94.
    Doane, D. P., & Seward, L. E. (2011). Measuring skewness: a forgotten statistic?. Journal of statistics education, 19(2).
    Dong, X., Li, Y., Rapach, D. E., & Zhou, G. (2022). Anomalies and the expected market return. The Journal of Finance, 77(1), 639-681.
    Doran, J. S., Fodor, A., & Jiang, D. (2013). Call-put implied volatility spreads and option returns. Review of Asset Pricing Studies, 3(2), 258-290.
    Figelman, I. (2008). Expected return and risk of covered call strategies. Journal of Portfolio Management, 34(4), 81.
    Figlewski, S., Chidambaran, N. K., & Kaplan, S. (1993). Evaluating the performance of the protective put strategy. Financial Analysts Journal, 46-69.
    Filippou, I., Rapach, D., Taylor, M. P., & Zhou, G. (2023). Out-of-sample exchange rate prediction: A machine learning perspective. Available at SSRN 3455713.
    Finta, M. A., & Ornelas, J. R. H. (2022). Commodity return predictability: Evidence from implied variance, skewness, and their risk premia☆☆. Journal of International Financial Markets, Institutions and Money, 79, 101569.
    Fu, X., Arisoy, Y. E., Shackleton, M. B., & Umutlu, M. (2016). Option-implied volatility measures and stock return predictability. The Journal of Derivatives, 24(1), 58-78.
    Fuertes, A. M., Liu, Z., & Tang, W. (2022). Risk‐neutral skewness and commodity futures pricing. Journal of Futures Markets, 42(4), 751-785.
    Gao, X., Wang, X., & Yan, Z. (2020). Attention: Implied volatility spreads and stock returns. Journal of Behavioral Finance, 21(4), 385-398.
    Graefe, A. (2015). Improving forecasts using equally weighted predictors. Journal of Business Research, 68(8), 1792-1799.
    Han, B., & Li, G. (2021). Information content of aggregate implied volatility spread. Management Science, 67(2), 1249-1269.
    Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: applications to nonorthogonal problems. Technometrics, 69-82.
    Hoffmann, A. O. I., & Fischer, T. Behavioral Aspects of Covered Call Writing: An Empirical Investigation (May 25, 2010). Available at SSRN 1615405.
    Holowczak, R., Hu, J., & Wu, L. (2014). Aggregating information in option transactions. The Journal of Derivatives, 21(3), 9-23.
    Huang, J. C., Tsai, Y. C., Wu, P. Y., Lien, Y. H., Chien, C. Y., Kuo, C. F., ... & Kuo, C. H. (2020). Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer methods and programs in biomedicine, 195, 105536.
    Hull, B., & Sinclair, E. (2022). The risk-reversal premium. Journal of Investment Strategies, 11(1).
    Israelov, R., & Nielsen, L. N. (2014). Covered call strategies: One fact and eight myths. Financial Analysts Journal, 70(6).
    Israelov, R., & Nielsen, L. N. (2015). Covered calls uncovered. Financial Analysts Journal, 71(6).
    Kang, B. J., Kim, T. S., & Yoon, S. J. (2010). Information content of volatility spreads. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 30(6), 533-558.
    Kelly, B., Lustig, H., & Van Nieuwerburgh, S. (2016). Too-systemic-to-fail: What option markets imply about sector-wide government guarantees. American Economic Review, 106(6), 1278-1319.
    Kim, T. S., & Park, H. (2018). Is stock return predictability of option‐implied skewness affected by the market state?. Journal of Futures Markets, 38(9), 1024-1042.
    Larcher, G., Del Chicca, L., & Szölgyenyi, M. (2013). Modeling and performance of certain put-write strategies. The Journal of Alternative Investments, 15(4), 74.
    Li, J., & Tsiakas, I. (2017). Futures return prediction: The role of economic and statistical constraints. Journal of financial markets, 36, 56-75.
    Li, K. Do Short Sellers Search for Signals from Other Markets? Evidence from Option Trading. Evidence from Option Trading.
    Lin, C.-L., & Liao, S.-L. (2024, forthcoming). Construction of Directional Volatility Index. International Journal of Business, 29(1).
    Liu, C. A., & Kuo, B. S. (2016). Model averaging in predictive regressions. The Econometrics Journal, 19(2), 203-231.
    Meligkotsidou, L., Panopoulou, E., Vrontos, I. D., & Vrontos, S. D. (2021). Out-of-sample futures return prediction: A complete subset quantile regression approach. The European Journal of Finance, 27(1-2), 110-135.
    Narayan, P. K., & Ahmed, H. A. (2014). Importance of skewness in decision making: evidence from the Indian stock exchange. Global Finance Journal, 25(3), 260-269.
    Newey, W. K., & West, K. D. (1987). Hypothesis testing with efficient method of moments estimation. International Economic Review, 777-787.
    Pan, J., & Poteshman, A. M. (2006). The information in option volume for future stock prices. The Review of Financial Studies, 19(3), 871-908.
    Poon, S. H., & Pope, P. F. (2000). Trading volatility spreads: a test of index option market efficiency. European Financial Management, 6(2), 235-260.
    Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample futures return prediction: Combination forecasts and links to the real economy. The Review of Financial Studies, 23(2), 821-862.
    Rendleman, R. J. (2001). Covered call writing from an expected utility perspective. The Journal of Derivatives, 8(3), 63-75.
    Sasaki, H. (2016). The skewness risk premium in equilibrium and stock return predictability. Annals of Finance, 12(1), 95-133.
    Serur, J. A., Dapena, J. P., & Siri, J. R. (2021). Decomposing the VIX Index into Greed and Fear. Serie Documentos de Trabajo-Nro, 780.
    Shackleton, M. B., Taylor, S. J., & Yu, P. (2010). A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices. Journal of Banking & Finance, 34(11), 2678-2693.
    Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827.
    Singh, A. K., Gewali, L. P., & Khatiwada, J. (2019). New measures of skewness of a probability distribution. Open Journal of Statistics, 9(5), 601-621.
    SP, S., E, G., Acharya, R., & Matha, R. (2022). Are Options Trading Strategies Really Effective for Hedging in the Indian Derivatives Market?. Cogent Economics & Finance, 10(1), 2111783.
    Taiwan Futures Exchange, (2007). Annual Report.
    Ungar, J., & Moran, M. T. (2009). The cash-secured putwrite strategy and performance of related benchmark indexes. The Journal of Alternative Investments, 11(4), 43-56.
    Vanden, J. M. (2008). Information quality and options. The Review of Financial Studies, 21(6), 2635-2676.
    Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of futures return prediction. The Review of Financial Studies, 21(4), 1455-1508.
    Whaley, R. E. (2002). Return and risk of CBOE buy write monthly index. The Journal of Derivatives, 10(2), 35-42.
    Yang, Z. G. (2011). Buy-write or put-write: an active index writing portfolio to strike it right. Available at SSRN 1827363.
    描述: 碩士
    國立政治大學
    金融學系
    111352019
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111352019
    数据类型: thesis
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    201901.pdf1084KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈