政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/150121
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52054168      在线人数 : 677
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/150121


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/150121


    题名: 機器學習資產配置與台股ESG多因子投資組合建構
    Machine Learning Asset Allocation and Construction of ESG Multi-Factor Portfolios in the Taiwan Stock Market
    作者: 林浩詳
    Lin, Hau-Siang
    贡献者: 羅秉政
    Lo, PING-CHENG
    林浩詳
    Lin, Hau-Siang
    关键词: 機器學習
    超參數
    資產配置最適化
    多因子投資
    股利率因子
    獲利因子
    動能因子
    絕對報酬
    ETF
    ESG
    台股
    Machine learning
    Hyperparameters
    Asset allocation optimization
    Multi-factor investment
    Dividend yield factor
    Profit factor
    Momentum factor
    Absolute return
    ETF
    ESG
    Taiwanese stocks
    日期: 2024
    上传时间: 2024-03-01 12:34:34 (UTC+8)
    摘要: 本研究主要探討建構台股 ESG 計量投資組合,並應用於投信絕對報酬帳戶或是相對報酬帳戶之操作策略,主要分為以下流程。第一、資產配置:應用機器學習模型預測次月股債指數報酬率與波動率,再將其進行股債效率前緣最適化投資比重配置,輸入全球總經變數、利率、匯率、股價與債券指數、原物料報價等因子 (x_t),進行機器學習模型訓練,其中包括長短期記憶 (Long Short-Term Memory, LSTM)、循環門單元(Gate Recurrent Unit, GRU)模型。在訓練集 (2005/01至2014/12)優化超參數使股債預測漲跌幅之損失函數最小化,並檢視模型預測值與進行資產配置後績效之穩定度。並於測試集 (2015/01至2019/12)與驗證集 (2020/01至2021/12)觀察與調整。實際應用於真實帳戶 (2022/01至2023/12)。
    第二,近年 ESG 議題持續受各界重視,不論是政府勞動基金針對出具企業社會責任(CSR)報告書作為可投資清單外,投信業者亦持續推出 ESG概念 ETF產品,或針對 ESG分數較高的公司,納入股票池,對於有投入 ESG公司股價已產生一定影響力,本研究發現E因子分數逐年提升之公司,將具備較高的夏普值 (Sharpe Ratio),且在空頭市場表現也相對抗跌。本研究將比照政府勞動基金可投資清單,從中採用近年盛行於台灣指數公司所發行的多因子指數、 Smart Beta策略等方式,建構穩健投資組合,本研究觀察近年台灣股利率因子表現十分優異,若結合獲利因子與動能因子將可再提高超額報酬。
    從股票配置比重與挑選股票組成採用計量化投資模式,紀律性建構穩健投資組合。
    This paper primarily investigates the construction of an ESG investment portfolio for the Taiwanese stocks. The portfolio is then applied to the operational strategies of mutual funds in absolute or relative return accounts.
    Asset Allocation: Utilizing machine learning models to predict the next month's stock and bond index returns and volatility. Implementing stock and bond efficiency frontier optimal investment weight allocation based on the predictions. Inputting factors(x_t)such as global macroeconomic variables, interest rates, exchange rates, stock and bond indices, commodity prices, etc., into machine learning models, including LSTM and GRU. Training the models on the training set to optimize hyperparameters and minimize the loss function for predicting stock and bond price movements. Assessing the stability of model predictions and the performance after asset allocation. ESG Impact: Highlighting the impact of ESG considerations on stock prices, as observed in the annual improvement of Environmental (E) factor scores correlating with higher Sharpe Ratios. Recognizing the resilience of companies with increasing ESG scores, even in bear markets. Adapting strategies employed by government labor funds, including the incorporation of recent prevalent multi-factor indices and Smart Beta strategies for constructing robust portfolios. Noting the outstanding performance of the dividend yield factor in the Taiwanese market and the potential for enhanced returns by combining it with profit and momentum factors. The study employs a disciplined quantitative investment approach for asset allocation and stock selection to construct a robust investment portfolio.
    參考文獻: [1] 蔡伶婕(2020)。長短期記憶神經網路(LSTM)利率之預測。國立政治大學金融研究所碩士論文,台北市。
    [2] Akhigbe, A., & Madura, J. (1996). Dividend policy and corporate performance. Journal of Business Finance & Accounting, 23(9‐10), 1267-1287.
    [3] Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and Momentum Everywhere. Journal of Finance, 68(3), 929-985.
    [4] Amihud, Y., Hameed, A., Kang, W., & Zhang, H. (2015). The illiquidity premium: International evidence. Journal of Financial Economics, 117(2), 350-368.
    [5] Almahdi, S., & Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems with Applications, 87, 267-279.
    [6] Althelaya, K. A., El-Alfy, E.-S. M., & Mohammed, S. (2018). Stock Market Forecast Using Multivariate Analysis with Bidirectional and Stacked (LSTM, GRU). In 2018 21st Saudi Computer Society National Computer Conference (NCC) (pp. 1-7). Riyadh, Saudi Arabia. doi: 10.1109/NCG.2018.8593076.
    [7] Baskin, J. (1989). Dividend policy and the volatility of common stocks. Journal of portfolio Management, 15(3), 19.
    [8] Barroso, P., & Santa-Clara, P. (2015). Momentum has its moments. Journal of Financial Economics, 116(1), 111-120.
    [9] Chordia, T., & Shivakumar, L. (2002). Momentum, Business Cycle, and Time- varying Expected Returns. Journal of Finance, 57(2), 985-1019.
    [10] Chaves, D., Hsu, J., Li, F., & Shakernia, O. (2011). Risk parity portfolio vs. other asset allocation heuristic portfolios. Journal of Investing.
    [11] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint arXiv:1406.1078.
    [12] Cahan, E., & Ji, L. (2016, August). Asian Equity Fundamental Factor Model. PORTFOLIO & RISK ANALYTICS Bloomberg. Retrieved from Bloomberg PORT function paper.
    [13] Cosereanu, C., & Edler, D. (2021, February 16). Emulate Dalio’s Risk-Parity Strategy With Portfolio Optimizer. Bloomberg. Retrieved from Bloomberg FFM function report.
    [14] Chen, W., Zhang, H., Mehlawat, M. K., & Jia, L. (2021). Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing, 100, 106943.
    [15] Dimson, E., Karakaş, O., & Li, X. (2015). Active Ownership. The Review of Financial Studies, 28(12), 3225–3268.
    [16] Eccles, R. G., Ioannou, I., & Serafeim, G. (2014). The Impact of Corporate Sustainability on Organizational Processes and Performance. Management Science, 60(11).
    [17] Fama, E.F., & French, K.R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22(1), 3-25.
    [18] Fama, E. F., & French, K. R. (1992). The Cross-Section of Expected Stock Returns. Journal of Finance, 47(2), 427-465.
    [19] Fama, E.F., & French, K.R. (1993). Common risk factors in the return on stocks and bonds. Journal of Financial Economics, 33(1), 3-56.
    [20] Fama, E.F., & French, K.R. (1996). Multifactor Explanation of Asset Pricing Anomalies. Journal of Finance, 51(1), 55-84.
    [21] Flammer, C. (2012). Corporate Social Responsibility and Shareholder Reaction: The Environmental Awareness of Investors. Academy of Management Journal, 56(3).
    [22] Fisher, G. S., Shah, R., & Titman, S. (2015). Combining value and momentum. Journal of Investment Management, Forthcoming.
    [23] Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: aggregated evidence from more than 2000 empirical studies. Journal of sustainable finance & investment, 5(4), 210-233.
    [24] Gordon, M. J. (1959). Dividends, earnings, and stock prices. The review of economics and statistics, 99-105.
    [25] Gulen, H., Xing, Y., & Zhang, L. (2011). Value versus Growth: Time-Varying Expected Stock Returns. Journal of Empirical Finance, 40(2), 381-407.
    [26] Hong, H., & Kacperczyk, M. (2009). The price of sin: The effects of social norms on markets. Journal of Financial Economics, 93(1), 15-36.
    [27] Hou, K., Karolyi, G. A., & Kho, B.‐C. (2011). What Factors Drive Global Stock Returns? The Review of Financial Studies, 24(8), 2527–2574.
    [28] Hou, K., Xue, C., & Zhang, L. (2015). Digesting anomalies: An investment approach. The Review of Financial Studies, 28(3), 650-705.
    [29] Heaton, J.B., Polson, N.G., & Witte, J.H. (2016). Deep learning in Finance. arXiv preprint arXiv:1602.06561.
    [30] Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency.Journal of Finance, 48(1), 65-91.
    [31] Jegadeesh, N., & Titman, S. (2002). Profitability of Momentum Strategies: An Evaluation of Alternative Explanations. Journal of Finance, 56(2), 699-720.
    [32] Lakonishok, J., Shleifer, A., & Vishny, R. W. (1994). Contrarian Investment, Extrapolation, and Risk. Journal of Finance, 49(5), 1541-1578.
    [33] Lee, B. S. (1996). Comovements of earnings, dividends, and stock prices. Journal of Empirical Finance, 3(4), 327-346.
    [34] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77-91.
    [35] Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum⋆. Journal of Financial Economics, 104(2), 228-250.
    [36] Naughton, T., Truong, C., & Veeraraghavan, M. (2008). Momentum strategies and stock returns: Chinese evidence. Pacific-Basin Finance Journal, 16(4), 476-492.
    [37] Novy-Marx, R. (2012). Is momentum really momentum?. Journal of Financial Economics, 103(3), 429-453.
    [38] Obeidat, S., Shapiro, D., Lemay, M., MacPherson, M. K., & Bolic, M. (2018). Adaptive Portfolio Asset Allocation Optimization with Deep Learning. International Journal on Advances in Intelligent Systems, 11(1 & 2), 25-34.
    [39] Paster ,L., & Stambaugh, R. F. (2001). Liquidity Risk and Expected Stock Returns.Journal of Political Economy, 111(3), 642-685.
    [40] Rouwenhorst, K. G. (1998). International Momentum Strategies. Journal of Finance, 53(1), 267-284.
    [41] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," in Neural Computation, vol. 9, no. 8, pp. 1735-1780, 15 Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
    描述: 碩士
    國立政治大學
    金融學系
    108352003
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108352003
    数据类型: thesis
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML103检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈