English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52055779      Online Users : 482
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/146861
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146861


    Title: 從高維度消費紀錄挖掘隱藏偏好
    Discovering Hidden Preferences from High Dimensional Consumption Records
    Authors: 陳品嘉
    Chen, Pin-Chia
    Contributors: 莊皓鈞
    林靖庭

    Chuang, Hao-Chun
    Lin, Ching-Ting

    陳品嘉
    Chen, Pin-Chia
    Keywords: 高維度資料
    主題模型
    非負矩陣分解
    深度學習
    High-dimension data
    Topic modeling
    NMF
    Deep learning
    Date: 2023
    Issue Date: 2023-09-01 14:47:45 (UTC+8)
    Abstract: 理解消費者行為在許多領域中都被認為是重要的信息,尤其是在
    市場營銷中。但是,複雜的行為以及高維度、動態數據使得從中提取
    有意義的洞察變得困難。為了解決這些問題,我們結合了非負矩陣分
    解 (NMF) 和遞迴神經網絡 (RNN),提出深度動態神經網路 (Dynamic
    Deep NMF),來捕捉動態模式。NMF 的分解幫助我們總結消費主題
    和用戶對主題的興趣。而 RNN 的遞迴特性則幫助我們捕捉消費者
    的動態模式。我們設計了一個模擬實驗,產生模擬數據以測試 NMF
    和 Dynamic Deep NMF 的性能。最後,我們使用一個實證數據來展示
    Dynamic Deep NMF 會找到什麼隱藏主題,以及它如何捕捉動態用戶
    行為。
    To understand users’ consumption behavior is found critical in many fields,
    especially marketing. But the complex behavior embedded in high-dimensional,
    dynamic transaction data make it hard to extract meaningful insights. To
    tackle such problems, we combine the non-negative matrix factorization(NMF)
    and recurrent neural network (RNN) to develop a Dynamic Deep NMF in order to capture dynamic patterns and elicit hidden preferences. The decomposition of NMF helps us to summarize the consumption topics and users’ interests among the topics. And the recurrent properties of RNN helps us to
    capture the dynamic pattern of users’ interests. We also develop a simulation experiment to generate synthetic data to test the performances of NMF and Dynamic Deep NMF. Finally, we use an empirical dataset to demonstrate
    what hidden topics the Dynamic Deep NMF could find and how the method captures dynamic user behaviors.
    Reference: 參考文獻
    [1] A. V. Bodapati, “Recommendation systems with purchase data,” Journal of
    Marketing Research, vol. 45, no. 1, pp. 77–93, 2008. [Online]. Available:
    https://doi.org/10.1509/jmkr.45.1.077
    [2] J. R. Hauser, G. L. Urban, G. Liberali, and M. Braun, “Website morphing,”
    Marketing Science, vol. 28, no. 2, pp. 202–223, 2009. [Online]. Available:
    http://www.jstor.org/stable/23884254
    [3] J. R. Hauser, G. G. Liberali, and G. L. Urban, “Website morphing 2.0:
    Switching costs, partial exposure, random exit, and when to morph,” Management
    Science, vol. 60, no. 6, pp. 1594–1616, 2014. [Online]. Available: https:
    //doi.org/10.1287/mnsc.2014.1961
    [4] A. Goldfarb and C. Tucker, “Online display advertising: Targeting and
    obtrusiveness,” Marketing Science, vol. 30, no. 3, pp. 389–404, 2011. [Online].
    Available: http://www.jstor.org/stable/23012474
    [5] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. Provost, “Machine
    learning for targeted display advertising: Transfer learning in action,” Mach.
    Learn., vol. 95, no. 1, p. 103–127, apr 2014. [Online]. Available: https:
    //doi.org/10.1007/s10994-013-5375-2
    [6] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
    factorization,” Nature, vol. 401, pp. 788–791, 1999.
    25
    [7] J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of Population Structure
    Using Multilocus Genotype Data,” Genetics, vol. 155, no. 2, pp. 945–959, 06 2000.
    [Online]. Available: https://doi.org/10.1093/genetics/155.2.945
    [8] D. Guillamet and J. Vitrià, “Non-negative matrix factorization for face recognition,”
    in Proceedings of the 5th Catalonian Conference on AI: Topics in Artificial Intelligence, ser. CCIA ’02. Berlin, Heidelberg: Springer-Verlag, 2002, p. 336–344.
    [9] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing Systems 13 - Proceedings of the 2000
    Conference, NIPS 2000, ser. Advances in Neural Information Processing Systems.
    Neural information processing systems foundation, 2001, 14th Annual Neural Information Processing Systems Conference, NIPS 2000 ; Conference date: 27-11-2000
    Through 02-12-2000.
    [10] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative
    matrix factorization,” in Proceedings of the 26th Annual International ACM SIGIR
    Conference on Research and Development in Informaion Retrieval, ser. SIGIR ’03.
    New York, NY, USA: Association for Computing Machinery, 2003, p. 267–273.
    [Online]. Available: https://doi.org/10.1145/860435.860485
    [11] J. Mejia, S. Mankad, and A. Gopal, “Service quality using text mining: Measurement
    and consequences,” Manufacturing & Service Operations Management, vol. 23,
    no. 6, p. 1354–1372, nov 2021. [Online]. Available: https://doi.org/10.1287/msom.
    2020.0883
    [12] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
    with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. [Online].
    Available: https://www.science.org/doi/abs/10.1126/science.1127647
    [13] F. Ye, C. Chen, and Z. Zheng, “Deep autoencoder-like nonnegative matrix
    factorization for community detection,” in Proceedings of the 27th ACM
    International Conference on Information and Knowledge Management, ser. CIKM
    26
    ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 1393–
    1402. [Online]. Available: https://doi.org/10.1145/3269206.3271697
    [14] J. Wang and X.-L. Zhang, “Deep nmf topic modeling,” Neurocomput., vol. 515,
    no. C, p. 157–173, jan 2023. [Online]. Available: https://doi.org/10.1016/j.neucom.
    2022.10.002
    [15] P. S. Dhillon and S. Aral, “Modeling dynamic user interests: A neural matrix
    factorization approach,” Marketing Science, vol. 40, no. 6, p. 1059–1080, nov 2021.
    [Online]. Available: https://doi.org/10.1287/mksc.2021.1293
    [16] T. G. Kang, K. Kwon, J. W. Shin, and N. S. Kim, “Nmf-based target source separation
    using deep neural network,” IEEE Signal Processing Letters, vol. 22, no. 2, pp. 229–
    233, 2015.
    [17] J. Le Roux, J. R. Hershey, and F. Weninger, “Deep nmf for speech separation,” in
    2015 IEEE International Conference on Acoustics, Speech and Signal Processing
    (ICASSP), 2015, pp. 66–70.
    [18] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization with the
    β-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421–2456, 2011.
    [19] A. CICHOCKI and A.-H. PHAN, “Fast local algorithms for large scale nonnegative
    matrix and tensor factorizations,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E92.A, no. 3, pp. 708–721, 2009.
    [20] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
    word representation,” in Proceedings of the 2014 Conference on Empirical
    Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
    for Computational Linguistics, Oct. 2014, pp. 1532–1543. [Online]. Available:
    https://aclanthology.org/D14-1162
    [21] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
    Proceedings of the Fourteenth International Conference on Artificial Intelligence
    and Statistics, ser. Proceedings of Machine Learning Research, G. Gordon,
    27
    D. Dunson, and M. Dudík, Eds., vol. 15. Fort Lauderdale, FL, USA: PMLR,
    11–13 Apr 2011, pp. 315–323. [Online]. Available: https://proceedings.mlr.press/
    v15/glorot11a.html
    [22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
    preprint arXiv:1412.6980, 2014.
    [23] W. Webber, A. Moffat, and J. Zobel, “A similarity measure for indefinite
    rankings,” ACM Trans. Inf. Syst., vol. 28, no. 4, nov 2010. [Online]. Available:
    https://doi.org/10.1145/1852102.1852106
    [24] M. Kohjima, T. Matsubayashi, and H. Sawada, “Non-negative multiple matrix factorization for consumer behavior pattern extraction by considering attribution information,” Transactions of the Japanese Society for Artificial Intelligence, vol. 30,
    no. 6, pp. 745–754, 2015
    Description: 碩士
    國立政治大學
    金融學系
    110352019
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110352019
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2142View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback