政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146601
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52067140      Online Users : 941
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146601


    Title: 基於隱含隨機波動度模型之最小變異 Delta 避險策略 —以外匯選擇權市場為例
    Minimum-Variance Delta Hedging Strategy based on Implied Stochastic Volatility Model : An Empirical Study on the FX Options Market
    Authors: 林崇仁
    Lin, Chung-Jen
    Contributors: 林士貴
    羅秉政

    Lin, Shih-Kuei
    Kendro Vincent

    林崇仁
    Lin, Chung-Jen
    Keywords: 外匯市場
    隨機波動度模型
    最小變異 Delta
    避險
    Forex
    Stochastic Volatility Model
    Minimum Variance Delta
    Hedge
    Date: 2023
    Issue Date: 2023-08-02 14:11:33 (UTC+8)
    Abstract: 本研究以外匯市場中USD/JPY作為研究對象,在模型方面,採用Aït-Sahalia et al.(2021)提出的Implied Stochastic Volatility Model(ISVM),透過提出新的估計方法來建構隱含波動度曲面,與Heston模型進行模型比較,探討兩模型於隱含波動度曲面上之樣本內配適情形。而在風險管理方面,透過Minimum Variance Delta避險策略,相對於一般常見的Delta避險策略,不同的地方在於其除了考慮在資產價格變動下投資組合的影響外,亦同時考慮資產價格變動對於隱含波動度之影響考慮資產價格變化對於隱含波動度之影響。
    由實證結果顯示,在模型配適上,ISVM模型配適結果優於Heston模型。而在避險績效上,使用MV Delta避險策略之避險效果優於一般Delta避險策略,其中又以ISVM 模型最佳。此外,透過拆分subsample探討在極端的金融環境下,亦可發現不論是Heston模型或是ISVM模型,在高波動時期相比於低波動之穩定時期之績效表現較佳。
    This study focuses on the USD/JPY pair in the foreign exchange market. In terms of model construction, we adopt the Implied Stochastic Volatility Model (ISVM) as proposed by Aït-Sahalia et al. (2021). We compare this model to the Heston model to examine their respective fitness on the implied volatility surface. Empirical results indicate that the ISVM model outperform the Heston model.
    In terms of risk management, we adopt the Minimum Variance Delta hedging strategy, which distinguishes itself from conventional Delta hedging by consider- ing not only the influence of asset price changes on the portfolio but also the impact of these price changes on implied volatility. Our empirical results demonstrate that the hedging performance using the MV Delta strategy outperforms that of the conventional Delta hedging strategy, with the ISVM model performing optimally. Moreover, by splitting into subsamples to investigate under extreme financial conditions, we observe that both the Heston and ISVM models perform better during periods of high volatility as compared to periods of low and stable volatility.
    Reference: [1] Ahlip, R. and Rutkowski, M. (2013). Pricing of foreign exchange options under the heston stochastic volatility model and cir interest rates. Quantitative Finance, 13(6):955–966.
    [2] Aït-Sahalia, Y., Li, C., and Li, C. X. (2021). Implied stochastic volatility models. The Review of Financial Studies, 34(1):394–450.
    [3] Alexander, C. and Kaeck, A. (2012). Does model fit matter for hedging? evidence from ftse 100 options. Journal of Futures Markets, 32(7):609–638.
    [4] Alexander, C. and Nogueira, L. M. (2007). Model-free hedge ratios and scale-invariant models. Journal of Banking & Finance, 31(6):1839–1861.
    [5] Alexander, C., Rubinov, A., Kalepky, M., and Leontsinis, S. (2012). Regime-dependent smile- adjusted delta hedging. Journal of Futures Markets, 32(3):203–229.
    [6] Almeida, C., Fan, J., Freire, G., and Tang, F. (2022). Can a machine correct option pricing models? Journal of Business & Economic Statistics, pages 1–14.
    [7] Amin, K. I. and Jarrow, R. A. (1991). Pricing foreign currency options under stochastic interest rates. Journal of International Money and Finance, 10(3):310–329.
    [8] Andersen, L. and Andreasen, J. (2000). Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research, 4:231–262.
    [9] Bakshi, G., Cao, C., and Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of Finance, 52(5):2003–2049.
    [10] Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. The Review of Financial Studies, 9(1):69–107.
    [11] Bates, D. S. (2000). Post-’87 crash fears in the s&p 500 futures option market. Journal of Econometrics, 94(1-2):181–238.
    [12] Bates, D. S. (2012). Us stock market crash risk, 1926–2010. Journal of Financial Economics, 105(2):229–259.
    [13] Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3(1- 2):167–179.
    [14] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–654.
    [15] Bossens, F., Rayée, G., Skantzos, N. S., and Deelstra, G. (2010). Vanna-volga methods applied to fx derivatives: from theory to market practice. International Journal of Theoretical and Applied Finance, 13(08):1293–1324.
    [16] Branger, N., Krautheim, E., Schlag, C., and Seeger, N. (2012). Hedging under model misspecification: All risk factors are equal, but some are more equal than others.... Journal of Futures Markets, 32(5):397–430.
    [17] Carr, P. and Cousot, L. (2011). A pde approach to jump-diffusions. Quantitative Finance, 11(1):33–52.
    [18] Carr, P. and Cousot, L. (2012). Explicit constructions of martingales calibrated to given implied volatility smiles. SIAM Journal on Financial Mathematics, 3(1):182–214.
    [19] Carr, P., Geman, H., Madan 5, D. B., and Yor, M. (2004). From local volatility to local lévy models. Quantitative Finance, 4(5):581–588.
    [20] Cheng, H.-W., Chang, L.-H., Lo, C.-L., and Tsai, J. T. (2023). Empirical performance of component garch models in pricing vix term structure and vix futures. Journal of Empirical Finance, 72:122–142.
    [21] Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage and interest rate effects. Journal of Financial Economics, 10(4):407–432.
    [22] Christoffersen, P. and Jacobs, K. (2004). The importance of the loss function in option valuation. Journal of Financial Economics, 72(2):291–318.
    [23] Christoffersen, P., Jacobs, K., and Mimouni, K. (2010). Volatility dynamics for the s&p500: Evidence from realized volatility, daily returns, and option prices. The Review of Financial Studies, 23(8):3141–3189.
    [24] Christoffersen, P., Jacobs, K., and Ornthanalai, C. (2012). Dynamic jump intensities and risk premiums: Evidence from s&p500 returns and options. Journal of Financial Economics, 106(3):447–472.
    [25] Cont, R. and Da Fonseca, J. (2002). Dynamics of implied volatility surfaces. Quantitative Finance, 2(1):45.
    [26] Cox, J. C., Ingersoll Jr, J. E., and Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica: Journal of the Econometric Society, pages 363–384.
    [27] Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6):1343–1376.
    [28] Dumas, B., Fleming, J., and Whaley, R. E. (1998). Implied volatility functions: Empirical tests. The Journal of Finance, 53(6):2059–2106.
    [29] Dupire, B. et al. (1994). Pricing with a smile. Risk, 7(1):18–20.
    [30] Garman, M. B. and Kohlhagen, S. W. (1983). Foreign currency option values. Journal of
    International Money and Finance, 2(3):231–237.
    [31] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2):327–343.
    [32] Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42(2):281–300.
    [33] Hull, J. and White, A. (2017). Optimal delta hedging for options. Journal of Banking and Finance, 82:180–190.
    [34] Lee, R. W. (2001). Implied and local volatilities under stochastic volatility. International Journal of Theoretical and Applied Finance, 4(01):45–89.
    [35] Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, pages 141–183.
    [36] Nandi, S. (1996). Pricing and hedging index options under stochastic volatility: an empirical examination. Technical report, Working paper.
    [37] Ornthanalai, C. (2014). Levy jump risk: Evidence from options and returns. Journal of Financial Economics, 112(1):69–90.
    Description: 碩士
    國立政治大學
    金融學系
    110352029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110352029
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    202901.pdf2185KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback