English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52587507      Online Users : 1000
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/146311
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146311


    Title: 結合層級貝氏模型與後驗眾數於顧客購買時間間隔之研究
    A Study on Customer Interpurchase Times by Incorporating Hierarchical Bayesian Models with Posterior Mode Estimation
    Authors: 葉秉鈞
    Yeh, Ping-Chun
    Contributors: 翁久幸
    葉秉鈞
    Yeh, Ping-Chun
    Keywords: 購買間隔時間
    廣義伽瑪分配
    最大後驗估計
    拉普拉斯近似
    正規化
    interpurchase times
    generalized gamma distribution
    maximum a posteriori
    Laplace approximation
    regularization
    Date: 2023
    Issue Date: 2023-08-02 13:05:17 (UTC+8)
    Abstract: 馬可夫鏈蒙地卡羅法(Markov chain Monte Carlo,MCMC)在貝氏統計中是一種隨機化方法,在處理複雜函數時表現較好,但需要較長時間收斂。相對而言,貝氏統計中的拉普拉斯近似法較為快速,雖然對於後驗分配的估計較不精準,但在處理大規模資料上,使用這些方法仍是可考慮的選項。
    關於顧客購買時間間隔的資料,過去的研究或使用最大概似估計,或使用層級貝氏模型並以MCMC方法進行估計。前者雖計算速度較快,但有過度擬合(overfitting)的情形。後者雖準確度較高,但以MCMC方法運算費時,在大規模資料較不適用。本論文考慮層級貝氏模型以避免過度擬合,再以最大後驗估計取代MCMC之估計,來處理較大比數的資料並提升預測率。
    總結而言,本研究結合層級貝氏模型與最大後驗估計,應用於顧客購買時間間隔的問題。本研究的結果顯示,最大後驗估計相較於最大概似估計,雖計算時間稍長,但在AUC有得到提升;而最大後驗估計在計算量上遠低於MCMC,故較適合應用於大規模資料。
    Markov chain Monte Carlo (MCMC) is a stochastic method in Bayesian statistics that performs well when dealing with complex functions but requires a longer convergence time. In contrast, several approximate methods in Bayesian statistics are faster but may have lower accuracy. However, these methods can still be considered when handling large-scale data. In previous studies on customers’ interpurchase times , researchers have either used maximum likelihood estimation or employed hierarchical Bayesian models with MCMC for estimation. The former method is faster in computation but prone to overfitting. The latter method offers higher accuracy but is time-consuming when using MCMC, making it less suitable for large-scale data. This paper considers hierarchical Bayesian models to avoid overfitting and replaces MCMC estimation with maximum a posteriori estimation to handle larger datasets and improve prediction accuracy. In summary, this study combines hierarchical Bayesian models with maximum a posteriori estimation for the problem of customers’ interpurchase times. The results show that, compared to maximum likelihood estimation, maximum a posteriori estimation has slightly longer computation time but yields improvements in AUC estimation. On the other hand, maximum a posteriori estimation has significantly lower computational requirements than MCMC, making it more suitable for large-scale data applications.
    Reference: 郭瑞祥、蔣明晃、陳薏棻、楊凱全,”應用層級被式理論於跨商品類別之顧客 購 買期間預測模型”,管理學報,2009 蔣宛蓉,”廣義伽馬分配於顧客購買時間模型之應用”,2020
    Allenby, G. M., Leone, R. P., and Jen, L. (1999). A dynamic model of purchase timing with application to direct marketing. Journal of the American Statistical Association, 94(446), pages 365-374.
    Cox, C., Chu, H., Schneider, M. F., and Munoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine, 26(23), pages 4352-4374.
    Dadpay, A.,Soofi, E. S., and Soyer, R.(2007). Information measures for generalized gamma family. Journal of Econometrics, 138(2), pages 568~585.
    Jiang, W. R., Chen, L . S., Weng, C. H .(2021). The Generalized Gamma Distribution with Application to the Modeling of Customer’s Purchase Times. Journal of the Chinese Statistical Association, 59(2021), 255-279.
    Stacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.
    Description: 碩士
    國立政治大學
    統計學系
    110354027
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110354027
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402701.pdf1769KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback