English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51820047      Online Users : 614
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/146308
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146308


    Title: 探討兩資料集之相關性
    Exploring the correlation between two datasets
    Authors: 李其軒
    Li, Qi-Xuan
    Contributors: 鄭宗記
    Cheng, Tsung-Chi
    李其軒
    Li, Qi-Xuan
    Keywords: Mantel 檢定
    典型相關分析
    RV係數
    PROTEST
    距離共變異數檢定
    歐氏距離
    馬氏距離
    皮爾森相關係數距離
    Mantel test
    Canonical correlation analysis
    RV coefficient
    PROTEST
    Distance covariance test
    Euclidean distance
    Mahalanobis distance
    Pearson correlation distance
    Date: 2023
    Issue Date: 2023-08-02 13:04:38 (UTC+8)
    Abstract: 在生物統計或生態統計研究中,衡量兩組多維度資料集相關性是重要課題,統計方法中衡量兩資料集相關性除了典型相關係數分析(canonical correlation analysis)外,本研究探討其他方法,包括Mantel檢定(Mantel test)、RV係數(RV coefficient)、PROTEST(Procrustean randomization test)、距離共變異數檢定(distance covariance test),並且比較這幾種方法在不同的資料形態下優劣。Mantel檢定以及距離共變異數檢定需要透過距離來衡量資料集的相關性,本文除了使用Mantel檢定以及距離共變異數檢定常見的歐氏距離(Euclidean distance)外,也加入馬氏距離(Mahalanobis distance)和皮爾森相關係數距離(Pearson correlation distance),比較不同距離方法是否影響檢定效果。透過電腦模擬一般多元常態分配資料以及模擬非常態分配資料,針對每個模型分配改變資料的樣本數、資料的維度、資料變數的變異數,並且依據每種檢定的檢定力(power)和檢定力圖(power curve),來比較各檢定的效果,最後利用美國黃鶯(American wood warbler)音符結構與鳥鳴聲、小白鼠基因與體內脂肪酸兩實證資料集觀察各檢定的檢定結果。
    In biological statistics or ecological statistics research, assessing the correlation between two multidimensional datasets is an important topic. In addition to canonical correlation analysis, this study explores other methods for measuring the correlation between two datasets. These methods include the Mantel test, RV coefficient, PROTEST (Procrustean randomization test), and distance covariance test. The study compares the performance of these methods under different data structures. The Mantel test and distance covariance test require the use of distance measures to quantify the similarity between datasets. In this study, besides the commonly used Euclidean distance, Mahalanobis distance and Pearson correlation distance are also employed to examine whether different distance measures affect the test results. Computer simulations are conducted using multivariate normal distribution data and non-normal distribution data. The sample size, dimensionality of the data, and variance of the data variables are varied for each simulated model. The effectiveness of each test is compared based on the test power and power curves. Finally, the empirical datasets of American wood warbler song structures and gene expression with hepatic fatty acids in mice are used to observe the test results of each method.
    Reference: Abdi, H. (2011). Conguence: Congruence coefficient, RV-coefficient, and Mantel coefficient. pp. 1-15.
    Buskirk, J.V. (1997). Independent evolution of song structure and note structure in American wood warblers. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1382), pp. 755-761.
    Diniz-Filho, J. A., Soares, T. N., Lima, J. S., Dobrovolski, R., Landeiro, V. L., de Campos Telles, M. P., Rangel, T. F., & Bini, L. M. (2013). Mantel test in population genetics. Genetics and molecular biology, 36(4), pp. 475-485.
    Dow, M. M., & Cheverud, J. M. (1985). Comparison of distance matrices in studies of population structure and genetic microdifferentiation: quadratic assignment. American journal of physical anthropology, 68(3), pp. 367-373.
    Dutilleul, P., Stockwell, J.D., Frigon, D., & Legendre, P. (2000). The Mantel test versus Pearson`s correlation analysis Assessment of the differences for biological and environmental studies. Journal of Agricultural Biological and Environmental Statistics, 5(2), pp. 131-150.
    Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, pp. 751-760.
    Ghorbani, H.R. (2019). Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis Series Mathematics and Informatics, 34(3), pp. 583-595.
    González, I. ., Déjean, S., Martin, P. . G. P., & Baccini, A. (2008). CCA: An R Package to Extend Canonical Correlation Analysis. Journal of Statistical Software, 23(12), pp. 1-14.
    Goslee, S.C., & Urban, D.L. (2007). The ecodist Package for Dissimilarity-based Analysis of Ecological Data. Journal of Statistical Software, 22(7), pp. 1-19.
    Härdle W. K., & Simar L.. (2015). "Canonical Correlation Analysis". Applied Multivariate Statistical Analysis., pp. 321-330.
    Hotelling, H. (1935). The most predictable criterion. Journal of Educational Psychology, 26, pp. 139-142.
    Husson, F., Lê, S., Mazet, J. (2007). FactoMineR: Factor Analysis and Data Mining with R. R package version 1.05. https://CRAN.R-project.org/package=FactoMineR
    Jackson, D. A. (1995). PROTEST: a Procrustean randomization test of community environment concordance. Écoscience, 2(3), pp. 297-303.
    Josse, J., Pagès, J., & Husson, F. (2008). Testing the significance of the RV coefficient. Computational Statistics & Data Analysis, 53(1), pp. 82-91.
    Legendre, P. and Legendre, L. (1998). Numerical ecology (2nd ed.). Amsterdam: Elsevier.
    Legendre, P., & Fortin, M. J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular ecology resources, 10(5), pp. 831-844.
    Legendre, P., Fortin, M., & Borcard, D. (2015). Should the Mantel test be used in spatial analysis? Methods in Ecology and Evolution, 6(11), pp. 1239-1247.
    Liu, G., Yang, S., Liu, W., Wang, S., Tai, P., Kou, F., Jia, W., Han, K., Liu, M., & He, Y. (2020). Canonical Correlation Analysis on the Association Between Sleep Quality and Nutritional Status Among Centenarians in Hainan. Frontiers in public health, 8, pp. 1-7.
    Lyu, J., & Nadarajah , S. (2022). New bivariate and multivariate log-normal distributions as models for insurance data. Results in Applied Mathematics, 14(87), pp. 1-26.
    Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 2(1), pp. 49-55.
    Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer research, 27(2), pp. 209-220.
    Mantel, N., & Valand, R. S. (1970). A technique of nonparametric multivariate analysis. Biometrics, 26(3), pp. 547-558.
    Martin, P. G., Guillou, H., Lasserre, F., Déjean, S., Lan, A., Pascussi, J. M., Sancristobal, M., Legrand, P., Besse, P., & Pineau, T. (2007). Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology (Baltimore, Md.), 45(3), pp. 767-777.
    McLachlan, G.J. (1999). Mahalanobis distance. Resonance, 4(6), pp. 20-26.
    Oksanen, F.J., et al. (2017). Vegan: Community Ecology Package. R package Version 2.4-3. https://CRAN.R-project.org/package=vegan.
    Omelka, M., & Hudecová, Š. (2013). A comparison of the Mantel test with a generalised distance covariance test. Environmetrics, 24(7), pp. 449-460.
    Peres-Neto, P. R., & Jackson, D. A. (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129(2), pp. 169-178.
    Silva, A., Dias, C.T., Cecon, P., & Rêgo, E. (2015). An alternative procedure for performing a power analysis of Mantel`s test. Journal of Applied Statistics, 42(9), pp. 1984-1992.
    Stöckl, S., & Hanke, M. (2014). Financial Applications of the Mahalanobis Distance. Applied Economics and Finance, 1(2), pp. 78-84.
    Székely, Gá. J., Rizzo, M. L. & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. The annals of statistics, 35, pp. 2769-2794.
    van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., Suzuki, A., Utami, S. S., & Merrill, M. (2003). Orangutan cultures and the evolution of material culture. Science (New York, N.Y.), 299(5603), pp. 102-105.
    Description: 碩士
    國立政治大學
    統計學系
    110354014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110354014
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401401.pdf36225KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback