政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146307
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113656/144643 (79%)
造访人次 : 51739670      在线人数 : 500
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/146307


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/146307


    题名: 監控相依品質變數比之變異數的 EWMA 管制圖
    EWMA Control Chart for Monitoring Variance of Ratio of Correlated Quality Variables
    作者: 陳韋豫
    Chen, Wei-Yu
    贡献者: 楊素芬
    蕭又新

    Yang,Su-Fen
    陳韋豫
    Chen, Wei-Yu
    关键词: 相依品質變數比
    變異數管制圖
    Ratio of correlated variables
    Variance control chart
    日期: 2023
    上传时间: 2023-08-02 13:04:20 (UTC+8)
    摘要: 在品質管制的領域中,我們常使用管制圖來監控製程以提升產出的品質。在眾多產業中,追蹤相依品質變數之間的比例變化相當重要。在過去,文獻上對於監控相依品質變數比的平均值或變異數的管制圖研究較少。因此,如何監控相依品質變數比的平均數或變異數的製程管制圖是值得探討的。
    本研究提出三種監控相依品質變數比的變異數管制圖,分別以符號檢定(sign test)方法、Mood (1954)的Rank test與Siegel & Tukey (1960)檢定兩分配變異數是否相同的檢定方法運用於建立相依變數比的變異數管制圖。本文在考慮不同的二元分配之下評估所提出的管制圖的表現,並與文獻中的比例變異數管制圖進行比較。最後,以半導體資料說明我們所提出的三種相依品質變數比的變異數管制圖的應用。
    In quality control, control charts are commonly used to monitor processes. In many industries, monitoring the proportions of correlated process variables is crucial. Currently, there has been less research on control charts for monitoring the mean or variance of ratio of correlated process variables.
    This study proposes three control charts for monitoring the variance of ratio of two correlated process variables. These control charts combine the sign test method, the Rank test method for dispersion proposed by Mood (1954), and the test for differences in variability proposed by Siegel & Tukey (1960). Moreover, the performance of the proposed control charts is evaluated under different bivariate distributions and also compared with some existing control charts from the literature. Additionally, the application of the three proposed control charts for monitoring the variance of ratio between two correlated process variables is demonstrated using semiconductor data.
    參考文獻: [1] Alt, F. B. (1985). Multivariate quality control. Encyclopedia of Statistical Science, 6, 110-122.
    [2] Alt, F. B., Smith, N. D. (1988). Multivariate process control. In: Krishnaiah PR, Rao CR, eds. Handbook of Statistics. Elsevier; 331-351.
    [3] Azzalini, A. and Valle, A. D. (1996). The multivariate skew normal distribution. Biometrika, 83, 715–726
    [4] Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. R. Statist. Soc. B, 61, 579–602.
    [5] Celano, G., Castagliola, P., Faraz, A., & Fichera, S. (2014). Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 30(8), 1361-1377.
    [6] Celano, G., Castagliola, P. (2016). Design of a phase II control chart for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 32(1):291–308.
    [7] Das, N. (2008). Nonparametric control chart for controlling variability based on rank test. Economic Quality Control, 23 (2):227-242.
    [8] Fan, J., Shu, L., Zhao, H., and H. Yeung. (2017). Monitoring multivariate process variability via eigenvalues. Computers & Industrial Engineering, 113:269–81.
    [9] Jones-Farmer, L. A. and Champ, C. W. (2010). A distribution-free phase I control charts for subgroup scale. Journal of Quality Technology, 42, pp. 373–387.
    [10] Lee, R. Y., Holland, B. S., and Flueck, J. A. (1979). Distribution of a ratio of correlated gamma random variables. SIAM J Appl Math, 36:304–320.
    [11] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387.
    [12] Mood, A. M. (1954). On the asymptotic efficiency of certain non-parametric two sample test. The Annals of Mathematical Statistics, 25:514-522.
    [13] Memar, A. O., and Niaki, S. T. A. (2009). New control charts for monitoring covariance matrix with individual observations. Quality and Reliability Engineering International, 25 (7):821–38.
    [14] Mason, R. L., Chou, Y. M., and Young, J. C. (2009). Monitoring variation in a multivariate process when the dimension is large relative to the sample size. Communications in Statistics - Theory and Methods, 38 (6):939–51.
    [15] Mason, R. L., Chou, Y. M. and Young, J. C. (2010). Decomposition of scatter ratios used in monitoring multivariate process variability. Communications in Statistics - Theory and Methods, 39 (12):2128–45.
    [16] Nguyen, H. D., Tran, K. P., & Heuchenne, C. (2019). Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts. Quality and Reliability Engineering International, 35(1), 439-460.
    [17] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1:239–250.
    [18] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87.
    [19] Siegel, S. and Tukey, J. W. (1960). Nonparametric sum of ranks procedure for relative spread in unpaired samples. Journal of the American Statistical Association, 55:429-445.
    [20] Tran, K. P., Castagliola, P., & Celano, G. (2016). Monitoring the ratio of two normal variables using run rules type control charts. International Journal of Production Research, 54(6), 1670-1688.
    [21] Tran, K. P., & Knoth, S. (2018). Steady-state ARL analysis of ARL-unbiased EWMA-RZ control chart monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 34(3), 377-390.
    [22] Yang, S. F., Lin, J. S., and Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert Systems with Applications, 38(5), 6239-6243.
    [23] Yang, S. F., Arnold, B. C., Liu, Y., Lu, M. C., and Lu, S. L. (2021). A new phase II EWMA dispersion control chart. Quality and Reliability Engineering International, 38:1635–1658.
    [24] Yang, S. F., and Arnold, B. C. (2016). A new approach for monitoring process variance. J Stat Comput Simul, 86:2749–2765.
    [25] Yen, C. L. and Shiau, J. J. H. (2010). A multivariate control chart for detecting increases in process dispersion. Statistica Sinica, 20:1683-1707.
    [26] Yen, C. L., Shiau, J. J. H., & Yeh, A. B. (2012). Effective control charts for monitoring multivariate process dispersion. Quality and Reliability Engineering International, 28(4), 409-426.
    [27] Zou, C. and Tsung, F. (2010). Likelihood ratio-based distribution-free EWMA control charts. Journal of Quality Technology, 42 (2):174-196.
    [28] Zombade, D. M., Ghute, V. B. (2014). Nonparametric control chart for variability using runs rules. The Experiment, 24(4):1683–1691.
    描述: 碩士
    國立政治大學
    統計學系
    110354013
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110354013
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    401301.pdf1544KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈