政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146303
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52200914      Online Users : 762
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146303


    Title: 具潛在因素之二元變數資料遺失值插補方法之研究
    A Study on Missing Data Imputation Methods for Binary Variables with Underlying Latent Factors
    Authors: 丁家麒
    Ting, Chia-Chi
    Contributors: 張育瑋
    Chang, Yu-Wei
    丁家麒
    Ting, Chia-Chi
    Keywords: 二元變數
    分類與迴歸樹
    試題反應理論模型
    插補遺失值
    binary variable
    Classification And Regression Tree
    Item Response Theory model
    missing data imputation
    Date: 2023
    Issue Date: 2023-08-02 13:03:22 (UTC+8)
    Abstract: 二元變數是一種常見的資料型態,而試題反應理論 (Item Response Theory) 模型是一種常見用來描述可觀測的二元變數之潛在相關的模型,常用來分析測驗中受試者的答題狀況的數據或是問卷調查的數據。這類數據也會出現遺失值的現象,其常見的遺失值插補(imputation) 方法有 IN 法、PM 法、IM 法、TW 法、RF 法及 EM 法共 6 種方法。本研究進一步在Chen (2022) 以分類與迴歸樹 (Classification And Regression Tree; CART) 插補遺失值的研究基礎上,應用其中 5 種分類與迴歸樹插補遺失值的方法至試題反應理論模型下的二元變數遺失值之插補,並且控制不同的模型、不同的遺失機制 (Rubin, 1976) 等設定,以模擬研究比較上述 11 種方法的插補效果。最後將這些方法應用在性自我概念問卷 (Multidimensional Sexual Self-Concept Questionnaire; MSSCQ) 與立方體比較測試 (Cube Comparsion Test; CCT)兩筆實際資料,展現各種插補方法的差異。
    Binary variable is a common data type. In the current study, we consider the type of correlation, underlying observed binary variables, that could be generated by latent factors in Item Response Theory (IRT) models, which are commonly used for data from tests or for data from questionnaires. Missing data are also issues for this type of data. In the literature, there are six popular imputation methods for binary variables with missing data: Treat missing responses as incorrect, Person Mean Imputation, Item Mean Imputation, Two-Way Imputation, Response Function Imputation, Expectation-Maximum Imputation. In the current study, we further apply the imputation methods in Chen (2022), imputation based on Classification And Regression Trees (CART) methods, to missing data imputation for binary data. We conduct simulation studies to compare the aforementioned imputation methods for missing binary data under missing mechanisms in (Rubin, 1976) and different data. Finally, these methods are applied to real data from the Multidimensional Sexual Self-Concept Questionnaire (MSSCQ) and Cube Comparsion Test (CCT) to illustrate the differences in imputation methods for binary missing data
    Reference: Ache, M. (2020). Kaggle Database.Multidimensional Sexual Self-Concept Questionnaire.https : / / www . kaggle . com / datasets / mathurinache / multidimensional - sexual - selfconcept-questionnaire
    Beaulac, C., & Rosenthal, J. S. (2020). Best: A decision tree algorithm that handles missing values.Computational Statistics, 35, 1001–1026.
    Bernaards, C. A., & Sijtsma, K. (2000). Influence of imputation and em methods on factor analysis when item nonresponse in questionnaire data is nonignorable. Multivariate Behavioral Research, 35, 321–364.
    Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. monterey, ca: Wadsworth & brooks.
    Chen, J.-Y. (2022). Missing Data Imputation with Classification and Regression Trees: A Simulation Study. (Unpublished master dissertation). National Cheng-Chi University, Taiwan, R.O.C.
    Dai, S., Wang, X., & Svetina, D. (2017). Testdataimputation: Missing item responses imputation for test and assessment data (r package version 2.3).
    Dempster, A. (1977). Maximum likelihood estimation from incomplete data via the em algorithm. Journal of the Royal Statistical Society, 39, 1–38.
    Finch, H. (2008). Estimation of item response theory parameters in the presence of missing data. Journal of Educational Measurement, 45, 225–245.
    Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An introduction to statistical learning: With applications in r. Spinger.
    Honaker, J., & King, G. (2010). What to do about missing values in time-series crosssection data. American journal of political science, 54, 561–581.
    Huisman, M. (2000). Imputation of missing item responses: Some simple techniques. Quality and Quantity, 34, 331–351.
    Janssen, A. B., & Geiser, C. (2010). On the relationship between solution strategies in two mental rotation tasks. Learning and Individual Differences, 20, 473–478.
    Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96, 589–604.
    Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica sinica, 815–840.
    Mislevy, R. J., & Wu, P.-K. (1996). Missing responses and irt ability estimation: Omits, choice, time limits, and adaptive testing. ETS Research Report Series, 1996, i–36.
    Quinlan, J. R. (1993). C4. 5: Programming for machine learning. Morgan Kauffmann, 38, 49.
    Rahman, M. G., & Islam, M. Z. (2013). Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques.KnowledgeBased Systems, 53, 51–65.
    Rasch, G. (1961). On general laws and the meaning of measurement. Psychology, Proceedings of the Fourth Berkley Symposium on Mathematical Statistics and Probability; University of California Press: Oakland, CA, USA, 5, 321–333.
    Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.
    Sijtsma, K., & van der Ark, L. A. (2003). Investigation and treatment of missing item
    scores in test and questionnaire data. Multivariate Behavioral Research, 38, 505– 528.
    Tibshirani, R. J., & Efron, B. (1993). An introduction to the bootstrap.
    Description: 碩士
    國立政治大學
    統計學系
    110354006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110354006
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    400601.pdf2103KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback