English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51678068      Online Users : 491
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/142069
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142069


    Title: 混合變數之互信息的假設檢定
    Hypotheses testing of the mutual information of two mixed-type variables
    Authors: 王俞惠
    Wang, Yu-Hui
    Contributors: 薛慧敏
    Hsueh, Huey-Ming
    王俞惠
    Wang, Yu-Hui
    Keywords: 互信息
    相關性檢定
    漸近原理
    排列檢定
    檢定力
    型一錯誤率
    Mutual information
    Test of dependence
    Asymptotic theory
    Permutation test
    Power
    Type one error rate
    Date: 2022
    Issue Date: 2022-10-05 09:01:50 (UTC+8)
    Abstract: 在大數據時代,很多實務資料同時涵蓋連續型與離散型變數(稱為混合型變數),在資料分析過程中常牽涉測量這些變數間的相關性。文獻上有許多方法以檢定連續型變數之間或離散型變數之間的獨立性,本研究則針對混合型變數之間相關性的檢定問題,我們將資訊理論中的互信息量延伸至此問題用以測量混合型變數間的相關性。Beknazaryan et al.(2018)定義混合型變數之互信息並且提出無母數估計方法,作者們並推導出該估計量的漸近常態性質。本研究延續該研究成果發展相關的檢定方法,包括常態漸近檢定和排列檢定。透過模擬實驗觀察到漸近檢定表現並不好,其型一誤差率遠低於顯著水準。我們進一步發現即便增加樣本數至3000時,該無母數估計量的抽樣分配與常態分配仍有相當歧異。相反地排列檢定的表現則過度激進,其型一誤差率無法有效控制在顯著水準下。為參考起見,模擬中也發現兩個檢定方法在特定對立假設下都有良好檢定力以偵測混合變數的相關性。本研究將所發展的統計檢定應用至一組羽球實證資料。本研究的結論是這兩個方法都有待改進。
    In the generation of big data, many practical data including both continuous and discrete variables (also known as mixed variables), and an analytical procedure often involves measuring the dependence between mixed variables. In literatures, many methods are developed to measure and test the dependence among continuous variables or among discrete variables. In this study, we focus on the test of the dependence between mixed variables. We extend the mutual information criterion in information theory to describe dependence between mixed variables. In the study of Beknazaryan et al. (2018), the authors defined the mutual information of mixed variables and proposed a nonparametric estimation method which employed kernel estimation. Further, the authors showed the asymptotic normality of the estimator. In this study, we follow their research and develop two correspondent hypothesis tests: an asymptotic test and permutation test. Through simulation experiments, it is seen that the two testing procedures do not have satisfactory performance in controlling the type I error rate, the asymptotic test is too conservative and the permutation test is too liberal. Further, we find that even when the sample size is increased to 3000, the sampling distribution of the nonparametric estimator is still deviated from a normal distribution. However, we find that both tests have good power to detect two dependent mixed variables under certain alternative hypothetical scenarios in the simulation. The two tests are applied to a real badminton data set for demonstration. We conclude that both methods have room for improvement.
    Reference: 劉宇軒,蔡子傑與薛慧敏(2022)。穿戴式裝置資料在羽球訓練上可行性分析。
    K. J. Begum & A. Ahmed (2015). The Importance of Statistical Tools in Research Work. International Journal of Scientific and Innovative Mathematical Research, Vol. 3, 50-58.
    A. Beknazaryan, X. Dang & H. L. Sang (2018). On Mutual Information Estimation for Mixed-Pair Random Variables. Statistics & Probability Letters, Vol. 148, 9-16.
    N. R. Cox (1974). Estimation of the Correlation between a Continuous and a Discrete Variable. Biometrics, Vol. 30, 171-178.
    T. M. Cover & Joy A. Thomas (2006). Elements of Information Yheory. John Wiley & Sons, Inc.
    Evie McCrum-Gardner (2007). Which is the Correct Statistical Test to Use? British Journal of Oral and Maxillofacial Surgery, Vol. 46, 38–41.
    S. Geisser (1975). The Predictive Sample Reuse Method with Applications. Journal of the American Statistical Association, Vol. 70, 320-328.
    W. H. Gao, S. Kannan, S. W. Oh & P. Viswanath (2017). Estimating Mutual Information for Discrete-Continuous Mixtures. Paper presented at the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA.
    J. Scott Long (1997). Regression Models for Categorical and Limited Dependent Variables. Sage Publications, Inc.
    P. Laarne, M. A. Zaidan & T. Nieminen (2020). Ennemi: Non-Linear Correlation Detection With Mutual Information. SoftwareX, Vol. 14, 100686.
    K. Pearson (1909). On a New Method of Determining Correlation Between a Measured Character A, and a Character B, of which Only the Percentage of Cases Wherein B Exceeds (or Falls Short of) a Given Intensity is Recorded for Each Grade of A. Biometrika, Vol. 7, 96-105.
    M. Stone (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society Series B (Methodological), Vol. 36, 111-147.
    B. W. Silverman (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, Inc.
    R. F. Tate (1954). Correlation Between a Discrete and a Continuous Variable. Point-Biserial Correlation. The Annals of Mathematical Statistics, Vol. 25, 603-607.
    R. F. Tate (1955). The Theory of Correlation Between Two Continuous Variables when One is Dichotomized. Biometrika, Vol. 42, 205-216.
    A. Wehrl (1978). General Properties of Entropy. Reviews of Modern Physics, Vol. 50, 221-260.
    Description: 碩士
    國立政治大學
    統計學系
    109354002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109354002
    Data Type: thesis
    DOI: 10.6814/NCCU202201498
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400201.pdf1327KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback