English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51715792      Online Users : 570
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/141551
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141551


    Title: 追蹤製程平均比的Phase II多元管制圖
    Phase II Control Charts for Monitoring Multi-Dimensional Ratios of Process Means
    Authors: 周秋全
    Chou, Chiu Chuan
    Contributors: 楊素芬
    葉百堯

    Yang, Su-Fen
    Yeh, Arthur B

    周秋全
    Chou, Chiu Chuan
    Keywords: 平均值比
    不偏估計式
    Phase II管制圖
    多元分配
    Multi-dimensional ratios of means
    Multivariate distribution
    Phase II control chart
    Unbiased estimator
    Date: 2022
    Issue Date: 2022-09-02 14:46:41 (UTC+8)
    Abstract: 近年來,用於監測平均值比管制圖有新的發展。然而,大多數現有的研究都集中在二元常態的平均值比管制圖上,且大多利用有偏差的平均值比估計式來發展管制圖。因此,本研究中,我們的動機是建立基於不偏估計式的Phase II管制圖,以監測來自多元常態和多元非常態製程的多維平均值比。
    本研究中,我們提供一個估計參數和管制界限的整體框架,適用於不同的多元分配。在不同的多元分配下,對所提出管制圖的表現進行衡量,並與文獻的管制圖進行比較。最後,介紹此管制圖的應用,以說明此管制圖如何用於監測成分數據的實務應用性,以及此管制圖如何用於監測成分數據。
    In recent years, there has been a resurgence in the development of control charts for monitoring the ratio of process means. However, most of the existing research has focused on univariate ratio of means under the assumption that the process follows a normal distribution, and most of the existing research utilize biased estimators of the ratio of means to develop the control charts. We are thus motivated in this study to develop Phase II control charts based on unbiased estimators for monitoring multi-dimensional ratios of means derived from normal and non-normal multivariate processes.
    In this study, we provide a general framework for estimating parameters and control limits which is applicable to different multivariate distributions. The performances of the proposed charts are evaluated and compared with the existing charts under different multivariate distributions. Finally, applications of the proposed control charts are presented to monitor the compositional data of milk.
    Reference: Atchinson, J. A. (2005, October). Concise Guide to Compositional Data Analysis. In2do Compositional Data Analysis Workshop CoDaWork Oct, Vol. 5, pp. 17-21.
    Abubakar, S. S., Khoo, M. B., Saha, S., & Teoh, W. L. (2020). Run sum control chart for monitoring the ratio of population means of a bivariate normal distribution. Communications in Statistics-Theory and Methods, 1-30.
    Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538.
    Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
    Celano, G., Castagliola, P., Faraz, A., & Fichera, S. (2014). Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 30(8), 1361-1377.
    Celano, G., & Castagliola, P. (2016a). Design of a phase II control chart for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 32(1), 291-308.
    Celano, G., & Castagliola, P. (2016b). A synthetic control chart for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 32(2), 681-696.
    Davis, R. B., & Woodall, W. H. (1991). Evaluation of control charts for ratios. In 22nd Annual Pittsburgh Conference on Modeling and Simulation, pp. 63-70.
    dos Santos Dias, C. T., Samaranayaka, A., & Manly, B. (2008). On the use of correlated beta random variables with animal population modelling. Ecological Modelling, 215(4), 293-300.
    Farokhnia, M., & Niaki, S. T. A. (2020). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 49(7), 1815-1838.
    Hotteling, H. (1947). Multivariate quality control, illustrated by the air testing of sample bombsights. Techniques of statistical analysis, 111-184.
    Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75.
    Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53.
    Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387.
    Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE Transactions (Institute of Industrial Engineers), 27(6), 800-810.
    Li, Z., Zou, C., Wang, Z., & Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165.
    Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Vol. 26, pp. 427-435.
    Melo, M. S., Ho, L. L., & Medeiros, P. G. (2017). Max D: an attribute control chart to monitor a bivariate process mean. The International Journal of Advanced Manufacturing Technology, 90(1), 489-498.
    Montgomery, D. C. (2020). Introduction to statistical quality control. New Jersey, United States of America: John Wiley & Sons Inc.
    Nguyen, H. D., Tran, K. P., & Heuchenne, C. (2019). Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts. Quality and Reliability Engineering International, 35(1), 439-460.
    ÖKSOY, D., Boulos, E., & DAVID PYE, L. (1993). Statistical process control by the quotient of two correlated normal variables. Quality Engineering, 6(2), 179-194.
    Pignatiello Jr, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of Quality Technology, 22(3), 173-186.
    Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 239-250.
    Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87.
    Spisak, A. W. (1990). A control chart for ratios. Journal of Quality Technology, 22(1), 34-37.
    Tran, K. P., Castagliola, P., & Celano, G. (2016a). Monitoring the ratio of two normal variables using run rules type control charts. International Journal of Production Research, 54(6), 1670-1688.
    Tran, K. P., Castagliola, P., & Celano, G. (2016b). Monitoring the ratio of two normal variables using EWMA type control charts. Quality and Reliability Engineering International, 32(5), 1853-1869.
    Tran, K. P., Castagliola, P., & Celano, G. (2016c). The performance of the Shewhart-RZ control chart in the presence of measurement error. International Journal of Production Research, 54(24), 7504-7522.
    Tran, K. P., Castagliola, P., & Celano, G. (2018). Monitoring the ratio of population means of a bivariate normal distribution using CUSUM type control charts. Statistical Papers, 59(1), 387-413.
    Tran, K. P., & Knoth, S. (2018). Steady‐state ARL analysis of ARL‐unbiased EWMA‐RZ control chart monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 34(3), 377-390.
    Wang, S., & Reynolds Jr., M. R. (2013). A GLR control chart for monitoring the mean vector of a multivariate normal process. Journal of Quality Technology, 45(1), 18-33.
    Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 37(6), 2384-2398.
    Description: 碩士
    國立政治大學
    統計學系
    109354024
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109354024
    Data Type: thesis
    DOI: 10.6814/NCCU202201225
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402401.pdf5029KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback