Reference: | Atchinson, J. A. (2005, October). Concise Guide to Compositional Data Analysis. In2do Compositional Data Analysis Workshop CoDaWork Oct, Vol. 5, pp. 17-21. Abubakar, S. S., Khoo, M. B., Saha, S., & Teoh, W. L. (2020). Run sum control chart for monitoring the ratio of population means of a bivariate normal distribution. Communications in Statistics-Theory and Methods, 1-30. Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538. Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303. Celano, G., Castagliola, P., Faraz, A., & Fichera, S. (2014). Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 30(8), 1361-1377. Celano, G., & Castagliola, P. (2016a). Design of a phase II control chart for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 32(1), 291-308. Celano, G., & Castagliola, P. (2016b). A synthetic control chart for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 32(2), 681-696. Davis, R. B., & Woodall, W. H. (1991). Evaluation of control charts for ratios. In 22nd Annual Pittsburgh Conference on Modeling and Simulation, pp. 63-70. dos Santos Dias, C. T., Samaranayaka, A., & Manly, B. (2008). On the use of correlated beta random variables with animal population modelling. Ecological Modelling, 215(4), 293-300. Farokhnia, M., & Niaki, S. T. A. (2020). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 49(7), 1815-1838. Hotteling, H. (1947). Multivariate quality control, illustrated by the air testing of sample bombsights. Techniques of statistical analysis, 111-184. Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75. Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53. Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387. Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE Transactions (Institute of Industrial Engineers), 27(6), 800-810. Li, Z., Zou, C., Wang, Z., & Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165. Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Vol. 26, pp. 427-435. Melo, M. S., Ho, L. L., & Medeiros, P. G. (2017). Max D: an attribute control chart to monitor a bivariate process mean. The International Journal of Advanced Manufacturing Technology, 90(1), 489-498. Montgomery, D. C. (2020). Introduction to statistical quality control. New Jersey, United States of America: John Wiley & Sons Inc. Nguyen, H. D., Tran, K. P., & Heuchenne, C. (2019). Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts. Quality and Reliability Engineering International, 35(1), 439-460. ÖKSOY, D., Boulos, E., & DAVID PYE, L. (1993). Statistical process control by the quotient of two correlated normal variables. Quality Engineering, 6(2), 179-194. Pignatiello Jr, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of Quality Technology, 22(3), 173-186. Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 239-250. Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87. Spisak, A. W. (1990). A control chart for ratios. Journal of Quality Technology, 22(1), 34-37. Tran, K. P., Castagliola, P., & Celano, G. (2016a). Monitoring the ratio of two normal variables using run rules type control charts. International Journal of Production Research, 54(6), 1670-1688. Tran, K. P., Castagliola, P., & Celano, G. (2016b). Monitoring the ratio of two normal variables using EWMA type control charts. Quality and Reliability Engineering International, 32(5), 1853-1869. Tran, K. P., Castagliola, P., & Celano, G. (2016c). The performance of the Shewhart-RZ control chart in the presence of measurement error. International Journal of Production Research, 54(24), 7504-7522. Tran, K. P., Castagliola, P., & Celano, G. (2018). Monitoring the ratio of population means of a bivariate normal distribution using CUSUM type control charts. Statistical Papers, 59(1), 387-413. Tran, K. P., & Knoth, S. (2018). Steady‐state ARL analysis of ARL‐unbiased EWMA‐RZ control chart monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 34(3), 377-390. Wang, S., & Reynolds Jr., M. R. (2013). A GLR control chart for monitoring the mean vector of a multivariate normal process. Journal of Quality Technology, 45(1), 18-33. Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 37(6), 2384-2398. |