政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141069
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51928909      線上人數 : 667
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/141069
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141069


    題名: 雙動能策略與權重平滑效果之應用
    Application of Dual Momentum Strategy and Weight Smoothing Effect
    作者: 李芷瑜
    Li, Chih-Yu
    貢獻者: 廖四郎
    Liao, Szu-Lang
    李芷瑜
    Li, Chih-Yu
    關鍵詞: 資產配置
    雙動能投資策略
    支援向量機
    Black-Litterman模型
    長時間短期記憶模型
    動能效果
    權重效果
    Asset Allocation
    Dual Momentum Strategy
    SVM
    Black-Litterman Model
    LSTM
    Momentum Effect
    Weighted Effect
    日期: 2022
    上傳時間: 2022-08-01 17:30:44 (UTC+8)
    摘要: 過去研究發現資產配置策略對投資組合的貢獻程度高達九成以上;而報酬預測是建構投資組合最核心的議題。本篇論文分析美國ETF市場資料,主要探討建構投資組合的策略及工具,創新動能投資策略並善用人工智慧科技的特性設計權重分配的規則,歸因四種投資組合的動能效果及權重效果,最後測試投資組合的穩健性及風險耐受性。戰略性資產配置(Strategic Asset Allocation)藉由動能的訊號產生的事件機率進行大類資產權重配置,能有效降低投資組合的整體風險,說明時間序列動能因子具有風險擇時的能力;戰術性資產配置(Tactical Asset Allocation)使用Black-Litterman模型結合長時間短期記憶神經網路轉換報酬分配來提高預測的準確度,其中長時間短期記憶神經網路預測準確率高達六成。研究結果發現,用以決定風險性資產權重的橫截面動能效果非常顯著,即便持有的資產屬於的投資組合類別(例如產業代表性ETF),仍有機會透過動能效果增加額外的報酬,其中規避突發風險性衝擊的效果則來自於風險性資產池中納入避險性資產,說明同時具報酬與風險擇時的能力。因此本文建議投資人可以動態方式調整股債的權重來規避風險的衝擊,並搭配橫截面動能策略追求最大化目標報酬。
    There is evidence that asset allocation strategies contribute more than 90% to investment portfolios, and return prediction is the core issue in portfolio construction. We conducted a data analysis in US ETF market, and focused on portfolio construction strategies and methods, including innovating dual momentum strategies, designing the rules of weight allocation by using the characteristics of artificial intelligence technology, and attributing the momentum effect and weight effect of investment portfolios. Finally, Robustness test and t-student test were used for statistical analysis. Strategic Asset Allocation is weighted based on the probability of events generated by momentum signals, which can reduce the overall risk of the investment portfolio effectively. It shows that time series momentum factor has the ability to market timing. On the other hand, Black-Litterman model combined with LSTM in Tactical Asset Allocation can be used to transform the distribution of returns, and improve the accuracy of prediction. Among them, prediction accuracy of LSTM is about 60%. The empirical results show that cross-sectional momentum effect used to determine the weight of risky assets is very significant. Even though the assets belong to an investment portfolio category (such as ETFs), there is still an opportunity to increase excess returns through the momentum. The principal conclusion was that investors can avoid the impact of risks through allocating the weight of stocks and bonds dynamically, and maximize the target returns by cross-sectional momentum strategy.
    參考文獻: [1] Antonacci, G. (2011), “Optimal Momentum: A global cross asset approach,” Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1833722.
    [2]Antonacci, G. (2013), “Absolute momentum: A simple rule-based strategy and universal trend-following overlay,” Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2244633.
    [3] Antonacci, G. (2017), “Risk premia harvesting through dual momentum,” Journal of Management & Entrepreneurship, 2(1), 27-55.
    [4] Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013), “Value and momentum everywhere,” The Journal of Finance, 68(3), 929-985.
    [5] Bird, R., Gao, X., & Yeung, D. (2017), “Time-series and cross-sectional momentum strategies under alternative implementation strategies,” Australian Journal of Management, 42(2), 230-251.
    [6] Black, F., & Litterman, R. (1990), “Asset allocation: combining investor views with market equilibrium,” The Journal of Fixed Income, 1(2), 7-18.
    [7] Black, F., & Litterman, R. (1992), “Global portfolio optimization,” Financial Analysts Journal, 48(5), 28-43.
    [8] Breiman, L. (2001), “Statistical modeling: The two cultures (with comments and a rejoinder by the author),” Statistical Science, 16(3), 199-231.
    [9] Brinson, G. P., Hood, L. R., & Beebower, G. L. (1986), “Determinants of portfolio performance,” Financial Analysts Journal, 42(4), 39-44.
    [10] Chopra, V. K., & Ziemba, W. T. (2013), The effect of errors in means, variances, and covariances on optimal portfolio choice, In Handbook of the fundamentals of financial decision making: Part I (pp. 365-373).
    [11] Cortes, C., & Vapnik, V. (1995), “Support-vector networks,” Machine Learning, 20(3), 273-297.
    [12] Donthireddy, P. (2018), “Black-Litterman Portfolios with Machine Learning derived Views,” ResearchGate, Retrieved March 12, 2022, form https://www.researchgate.net/publication/326489143_Black-Litterman_Portfolios_with_Machine_Learning_derived_Views.
    [13] Eichhorn, D., Gupta, F., & Stubbs, E. (1998), “Using constraints to improve the robustness of asset allocation,” Journal of Portfolio Management, 24(3), 41-48.
    [14] Fama, E. F., & French, K. R. (2015), “A five-factor asset pricing model,” Journal of Financial Economics, 116(1), 1-22.
    [15] Frost, P. A., & Savarino, J. E. (1988), “For better performance: Constrain portfolio weights,” Journal of Portfolio Management, 15(1), 29-34.
    [16] Ha, S., & Fabozzi, F. J. (2022), “Dual Momentum: Testing the Dual Momentum Strategy and Implications for Lifetime Allocations,” The Journal of Portfolio Management, 48(4), 282-301.
    [17] Idzorek, T. (2007), A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels, In Forecasting expected returns in the financial markets (pp. 17-38). Academic Press.
    [18] Israel, R., Kelly, B. T., & Moskowitz, T. J. (2020), “Can Machines ` Learn` Finance?”, Journal of Investment Management, 18(2), 23-26.
    [19] Jegadeesh, N., & Titman, S. (1993), “Returns to buying winners and selling losers: Implications for stock market efficiency,” The Journal of finance, 48(1), 65-91.
    [20] Litterman, R., & He, G. (2002), “The intuition behind black-litterman model portfolios,” Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=334304.
    [21] Markowitz, H. (1952), “Portfolio selection,” The Journal of Finance, 7(1), 77-91.
    [22] Menkhoff, L., Sarno, L., Schmeling, M., & Schrimpf, A. (2012), “Currency momentum strategies,” Journal of Financial Economics, 106(3), 660-684.
    [23] Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012), “Time series momentum,” Journal of Financial Economics, 104(2), 228-250.
    [24] Scherer, B. (2002), “Portfolio resampling: Review and critique,” Financial Analysts Journal, 58(6), 98-109.
    [25] Sharpe, W. F. (1964), “Capital asset prices: A theory of market equilibrium under conditions of risk,” The Journal of Finance, 19(3), 425-442.
    [26] Sharpe, W. F. (1974). “Imputing expected security returns from portfolio composition,” Journal of Financial and Quantitative Analysis, 9(3), 463-472.
    描述: 碩士
    國立政治大學
    金融學系
    109352030
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109352030
    資料類型: thesis
    DOI: 10.6814/NCCU202200883
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    203001.pdf1984KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋