English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51630348      Online Users : 540
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/141065
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141065


    Title: 以SOFR期貨建構利率期限結構:考慮跳躍過程之無套利Nelson-Siegel方法
    Constructing Term Structure with SOFR Futures : Arbitrage-Free Nelson-Siegel with Jump-Diffusion Approach
    Authors: 葉宗瑋
    Ye, Zong-Wei
    Contributors: 林士貴
    Lin, Shih-Kuei
    葉宗瑋
    Ye, Zong-Wei
    Keywords: SOFR
    SOFR 期貨
    考慮跳躍過程之 Nelson-Siegel 模型
    粒子濾波器
    SOFR
    SOFR futures
    AFNSJ
    Particle filter
    Date: 2022
    Issue Date: 2022-08-01 17:29:52 (UTC+8)
    Abstract: 隨著美元 LIBOR 即將被淘汰,我們迫切需要一個合理的且具有市場代表性的前瞻性期限 SOFR。在本研究中,我們擴展Christensen, Diebold, and Rudebusch (2011) 的方法,提出了考慮跳躍過程之無套利 Nelson-Siegel 模型(arbitrage-free Nelson-Siegel model, AFNSJ)來生成利率期限結構。AFNSJ 模型具有 Nelson-Siegel 架構,以確保對樣本內估計的良好配適度。同時 AFNSJ 模型在理論上也有了重要支持,其滿足資產定價中最重要的理論:無套利條件。此外,AFNSJ 模型藉由通過考慮跳躍過程捕捉 FOMC 會議後短期利率的跳躍。在實證研究中,我們利用粒子濾波器以及加權最大概似估計法來進行估計。其根據均方根誤差和概似比檢驗結果,我們表明AFNSJ 模型在統計上優於沒有跳躍過程的高斯模型。最後,通過研究過濾後的跳躍過程,我們發現 AFNSJ 模型可以廣泛地捕捉到 FOMC 會議和宏觀經濟指示性公告引起的。
    With the imminent phased out of USD LIBOR, there is an urgent need for a reasonable and market-representative forward-looking term SOFR. In this study, we propose the arbitrage-free Nelson-Siegel with jump-diffusion model (AFNSJ) extended by Christensen et al. (2011) to generate the interest rate term structure. The AFNSJ model has the Nelson-Siegel framework to ensure a good fit for in-sample estimation. It is also theoretically supported because it satisfies the most crucial theory in asset pricing: the no-arbitrage condition. Furthermore, the AFNSJ model captures the jumps pattern at short rates after the FOMC meeting by considering the jump process. In empirical studies, the particle filter with weighted maximum likelihood estimation was adopted to estimate. The root mean square error and likelihood ratio test results show that the AFNSJ model outperforms the Gaussian model without the jump process statistically. Finally, by investigating the filtered jumps, we find the AFNSJ can extensively capture the shock caused by the FOMC meetings and the announcements of macroeconomic.
    Reference: Andersen, L. B., & Bang, D. R. (2020). Spike modeling for interest rate derivatives with an application to sofr caplets. Available at SSRN 3700446.

    Balduzzi, P., Bertola, G., & Foresi, S. (1997). A model of target changes and the term structure of interest rates. Journal of Monetary Economics, 39(2), 223–249.

    Balduzzi, P., Das, S. R., & Foresi, S. (1998). The central tendency: A second factor in bond yields. Review of Economics and Statistics, 80(1), 62–72.

    Balduzzi, P., Elton, E. J., & Green, T. C. (2001). Economic news and bond prices: Evidence from the us treasury market. Journal of Financial and Quantitative Analysis, 36(4), 523–
    543.

    Bernanke, B. S., & Kuttner, K. N. (2005). What explains the stock market’s reaction to federal reserve policy? The Journal of Finance, 60(3), 1221–1257.

    Chan, K. F., & Gray, P. (2018). Volatility jumps and macroeconomic news announcements. Journal of Futures Markets, 38(8), 881–897.

    Cheridito, P., Filipović, D., & Kimmel, R. L. (2007). Market price of risk specifications for affine models: Theory and evidence. Journal of Financial Economics, 83(1), 123–170.

    Christensen, J. H., Diebold, F. X., & Rudebusch, G. D. (2011). The affine arbitrage-free class of nelson–siegel term structure models. Journal of Econometrics, 164(1), 4–20.

    Christoffersen, P., Heston, S., & Jacobs, K. (2013). Capturing option anomalies with a variance-dependent pricing kernel. The Review of Financial Studies, 26(8), 1963–2006.

    Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica, 53(2), 363–384.

    Dai, Q., & Singleton, K. J. (2000). Specification analysis of affine term structure models. The Journal of Finance, 55(5), 1943–1978.

    Dai, Q., & Singleton, K. J. (2002). Expectation puzzles, time-varying risk premia, and affine models of the term structure. Journal of Financial Economics, 63(3), 415–441.

    Das, S. R. (2002). The surprise element: jumps in interest rates. Journal of Econometrics,106(1), 27–65.

    Das, S. R., & Foresi, S. (1996). Exact solutions for bond and option prices with systematic jump risk. Review of Derivatives Research, 1(1), 7–24.

    Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130(2), 337–364.

    Duarte, J. (2004). Evaluating an alternative risk preference in affine term structure models. The Review of Financial Studies, 17(2), 379–404.

    Duffee, G. R. (2002). Term premia and interest rate forecasts in affine models. The Journal of Finance, 57(1), 405–443.

    Duffie, D., & Kan, R. (1996). A yield-factor model of interest rates. Mathematical Finance, 6(4), 379–406.

    Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), 1343–1376.

    Dungey, M., McKenzie, M., & Smith, L. V. (2009). Empirical evidence on jumps in the term structure of the us treasury market. Journal of Empirical Finance, 16(3), 430–445.

    Fong, H. G., & Vasicek, O. A. (1991). Fixed-income volatility management. Journal of Portfolio Management, 17(4), 41–46.

    Gellert, K., & Schlögl, E. (2021). Short rate dynamics: A fed funds and sofr perspective. FIRN Research Paper.

    Green, T. C. (2004). Economic news and the impact of trading on bond prices. The Journal of Finance, 59(3), 1201–1233.

    Heitfield, E., & Park, Y.-H. (2019). Inferring term rates from sofr futures prices. Working Paper.

    Jarrow, R., Li, H., & Zhao, F. (2007). Interest rate caps “smile”too! but can the libor market models capture the smile? The Journal of Finance, 62(1), 345–382.

    Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate models. The Journal of Finance, 59(1), 227–260.

    Jones, C. M., Lamont, O., & Lumsdaine, R. L. (1998). Macroeconomic news and bond market volatility. Journal of Financial Economics, 47(3), 315–337.

    Litterman, R., & Scheinkman, J. (1991). Common factors affecting bond returns. Journal of Fixed Income, 1(1), 54–61.

    Longstaff, F. A., & Schwartz, E. S. (1992). Interest rate volatility and the term structure: A two-factor general equilibrium model. The Journal of Finance, 47(4), 1259–1282.

    Lyashenko, A., & Mercurio, F. (2019). Looking forward to backward-looking rates: a modeling framework for term rates replacing libor. Available at SSRN 3330240.

    Macrina, A., & Skovmand, D. (2020). Rational savings account models for backward-looking interest rate benchmarks. Risks, 8(1), 23.

    Mercurio, F. (2018). A simple multi-curve model for pricing sofr futures and other derivatives. Available at SSRN 3225872.

    Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 60(4), 473–489.

    Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics, 63(1), 3–50.

    Santa-Clara, P., & Yan, S. (2010). Crashes, volatility, and the equity premium: Lessons from s&p 500 options. The Review of Economics and Statistics, 92(2), 435–451.

    Savor, P., & Wilson, M. (2014). Asset pricing: A tale of two days. Journal of Financial Economics, 113(2), 171–201.

    Skov, J. B., & Skovmand, D. (2021). Dynamic term structure models for sofr futures. Journal of Futures Markets, 41(10), 1520–1544.

    Svensson, L. E. (1994). Estimating and interpreting forward interest rates: Sweden 1992-1994.Working Paper.

    Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2), 177–188.

    Wright, J. H., & Zhou, H. (2009). Bond risk premia and realized jump risk. Journal of Banking & Finance, 33(12), 2333–2345
    Description: 碩士
    國立政治大學
    金融學系
    109352026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109352026
    Data Type: thesis
    DOI: 10.6814/NCCU202200930
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202601.pdf1067KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback