Reference: | Aktan, A. M., Kara, I., Sener, I., Bereket, C., Celik, S., Kirtay, M., Ciftci, M. E., and Arici, N. (2012). An evaluation of factors associated with persistent primary teeth. European Journal of Orthodontics, 34, 208-212. Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge, New York. Brown, B., Miller, C. J., and Wolfson, J. (2017). ThrEEBoost: Thresholded boosting for variable selection and prediction via estimating equations. Journal of Computational and Graphical Statistics, 26, 579-588. Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with penalized spline. Biometrics, 59, 570-579 Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Model, Chapman and Hall, New York Chen, L.-P. (2018). Semiparametric estimation for the accelerated failure time model with length-biased sampling and covariate measurement error. Stat, 7, e209. Chen, L.-P. (2019). Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error. Statistics and Probability Letters, 154, 108547. Chen, L.-P. (2020). Semiparametric estimation for the transformation model with length�biased data and covariate measurement error. Journal of Statistical Computation and Simulation, 90, 420-442. Chen, L.-P. (2021). Variable selection and estimation for the additive hazards model sub�ject to left-truncation, right-censoring and measurement error in covariates. Journal of Statistical Computation and Simulation, 90, 3261-3300. Chen, L.-P. and Yi, G. Y. (2020). Model selection and model averaging for analysis of truncated and censored data with measurement error. Electronic Journal of Statistics, 14, 4054-4109. Chen, L.-P. and Yi, G. Y. (2021a). Semiparametric methods for left-truncated and right�censored survival data with covariate measurement error. Annals of the Institute of Statistical Mathematics, 73, 481–517. Chen, L.-P. and Yi, G. Y. (2021b). Analysis of noisy survival data with graphical propor�tional hazards measurement error models. Biometrics, 77, 956–969. Du, M. and Sun, J. (2021). Variable selection for interval-censored failure time data. Inter�national Statistical Review, 1-23. Du, M., Zhao, H., and Sun, J. (2021). A unified approach to variable selection for Cox’s proportional hazards model with interval-censored failure time data. Statistical Methods in Medical Research, 30, 1833-1849. Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360. Fu, W. and Simonoff, J. S. (2017). Survival trees for interval-censored survival data. Statis�tics in Medicine, 36, 4831-4842. Gao, F., Zeng, D., and Lin, D. Y. (2017). Semiparametric estimation of the accelerated failure time model with partly interval-censored data. Biometrics, 73, 1161-1168. Gao, F. and Chan, K. C. G. (2019). Semiparametric regression analysis of length-biased interval-censored data. Biometrics, 75, 121-132. Hu, Q., Liang, Z., Liu, Y., Sun, J., Srivastava, D. K., and Robison, L. L. (2020). Nonpara�metric screening and feature selection for ultrahigh-dimensional Case II interval-censored failure time data. Biometrical Journal, 62, 1909–1925. Huang, J. (1999). Asymptotic properties of nonparametric estimation based on partly interval-censored data. Statistica Sinica, 9, 501-519. Kim, J. S. (2003). Maximum likelihood estimation for the proportional hazards model with partly interval-censored data. Journal of the Royal Statistical Society, Series B, 65, 489-502. Kom´arek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as an error distribution. Statistica Sinica, 17, 549–569. K¨uchenhoff, H., Lederer, W., and Lesaffre, E. (2007). Asymptotic variance estimation for the misclassification SIMEX. Computational Statistics & Data Analysis, 51, 6197-6211. K¨uchenhoff, H., Mwalili, S. M., and Leasaffre, E. (2006). A general method for dealing with misclassificationin regression: The misclassification SIMEX. Biometrics, 62, 85-96. Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. Wiley, New York. Mandal, S., Wang, S., and Sinha, S. (2019). Analysis of linear transformation models with covariate measurement error and interval censoring. Statistics in Medicine, 38, 4642-4655. Ning, J., Qin, J., and Shen, Y. (2011). Buckley-James-type estimator with right-censored and length-biased data. Biometrics, 67, 1369-1378. Qiu, Z., Qin, J., and Zhou, Y. (2016). Composite estimating equation method for the accelerated failure time model with length-biased sampling data. Scandinavian Journal of Statistics, 43, 396-415. Scolas, S., Ghouch, A. E., Legrand, C., and Oulhaj, A. (2016). Variable selection in a flexible parametric mixture cure model with interval-censored data. Statistics in Medicine, 35,1210-1225. Song, X. and Ma, S. (2008). Multiple augmentation for interval-censored data with mea�surement error. Statistics in Medicine, 27, 3178-3190. Sun, L., Li, S., Wang, L., and Song, X. (2021). Simultaneous variable selection in regression analysis of multivariate interval-censored data. Biometrics, 1-12. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267-288. Wang, L., McMahan, C. S., Hudgens, M. G., and Qureshi, Z. P. (2016). A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data. Biometrics, 72, 222-231. Wang, P., Li, D., and Sun, J. (2021). A pairwise pseudo-likelihood approach for left�truncated and interval-censored data under the Cox model. Biometrics, 77, 1303-1314. Wen, C.-C. and Chen, Y.-H. (2014). Functional inference for interval-censored data in proportional odds model with covariate measurement error. Statistica Sinica, 24, 1301- 1317. Wolfson, J. (2011). EEBOOST: a general method for prediction and variable selection based on estimating equation. Journal of the American Statistical Association, 106, 296-305. Wu, Y. and Cook, R. J. (2015). Penalized regression for interval-censored times of disease progression: selection of HLA markers in psoriatic arthritis. Biometrics, 71, 782-791. Yao, W., Frydman, H., and Simonoff, J. S. (2019). An ensemble method for interval-censored time-to-event data. Biostatistics, 22, 198-213. Yavuz, A. C¸ . and Lambert, P. (2011). Smooth estimation of survival functions and hazard ratios from interval-censored data using Bayesian penalized B-splines. Statistics in Medicine, 30 75-90. Zhang, T. and Yu, B. (2005). Boosting with early stopping: convergence and consistency. The Annals of Statistics, 33, 1538-1579. Zhao, H., Wu, Q., Li, G., and Sun, J. (2020). Simultaneous estimation and variable selec�tion for interval-censored data With broken adaptive ridge regression. Journal of the American Statistical Association, 115, 204-216. Zhao, X., Zhao, Q., Sun, J., and Kim, J. S. (2008). Generalized log-rank tests for partly interval-censored failure time data. Biometrical Journal, 50, 375-385. Zhou, Q., Hu, T., and Sun, J. (2017). A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data. Journal of the American Statistical Association, 112, 664-672. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67, 301-320. Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association. 101, 1418–1429. |