政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/140200
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51874221      在线人数 : 527
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/140200


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/140200


    题名: 透過貪婪分割法偵測函數型資料序列的多重轉換點
    Multiple changepoints detection for functional data sequence through greedy segmentation
    作者: 陳裕庭
    Chen, Yu-Ting
    贡献者: 黃子銘
    丘政民

    Huang, Tzee-Ming
    Chiou, Jeng-Min

    陳裕庭
    Chen, Yu-Ting
    关键词: 多重轉換點問題
    函數型主成分分析
    共變函數算子
    假設檢定
    Multiple changepoint problem
    Functional principal component analysis
    Covariance operator
    Hypothesis testing
    日期: 2022
    上传时间: 2022-06-01 16:26:02 (UTC+8)
    摘要: 在本研究中,我們針對函數型資料序列中的多重轉換點偵測問題提出了適當的準則,透過此準則可將多重轉換點視作該準則下的$M$維最佳分割。
    但由於轉換點個數$M$為未知,在給定不同的$K$值的狀況下,我們進一步探討$K$維最佳分割與多重轉換點之間的關係,並且發現無論$K$相對於$M$大小,透過最佳分割作為轉換點的估計式皆展現了理論上的一致性。
    其中,應用$K<M$時的結果,我們亦提出貪婪分割法來估計多重轉換點的位置;貪婪分割法不但擁有不亞於二元分割法的執行速度,且在不需要任何與至多一個轉換點相關的假設下依舊能保持理論上的一致性。
    同時,基於貪婪分割法估計式,我們同時提出了與之相關的檢定統計量,透過該檢定統計量在不同情境下的漸近分布來估計轉換點的個數,並給出具體的演算法。
    針對貪婪分割法在實務上的表現,我們透過一系列的模擬研究以及實例分析來加以驗證。
    In this study, we propose a criterion for multiple changepoint detection in a functional data sequence.
    Using the proposed criterion, the set of multiple changepoints can be characterized as an optimal $M$-segmentation.
    However, because the number of changepoints $M$ is unknown, we further investigate the theoretical properties of the optimal $K$-segmentation with respect to different values of $K$. It turns out the optimal $K$-segmentation is always consistent no matter when $K\\geq M$ or when $K< M$.
    Using the consistency result when $K< M$, we propose Greedy Segmentation estimator, which is as efficient as Binary Segmentation and holds the consistency property without any assumption related to the at-most-one-changepoint assumption. Meanwhile, we also propose a test statistic based on the Greedy Segmentation estimator, whose asymptotic distribution is helpful in estimating the number of changepoints $M$.
    The whole procedure is integrated as an algorithm that is easy to apply.
    Finally, we study the finite-sample performance of Greedy Segmentation algorithm through simulation study and data applications
    參考文獻: [1] Donald WK Andrews. Heteroskedasticity and autocorrelation consistent covariance matrix
    estimation. Econometrica, 59(3):817–858, 1991.

    [2] John AD Aston and Claudia Kirch. Detecting and estimating changes in dependent
    functional data. Journal of Multivariate Analysis, 109(4):204–220, 2012.

    [3] Alexander Aue, Robertas Gabrys, Lajos Horváth, and Piotr Kokoszka. Estimation of a
    change-point in the mean function of functional data. Journal of Multivariate Analysis,
    100(10):2254–2269, 2009.

    [4] Alexander Aue, Gregory Rice, and Ozan Sönmez. Detecting and dating structural breaks
    in functional data without dimension reduction. Journal of the Royal Statistical Society:
    Series B (Statistical Methodology), 80(3):509–529, 2018.

    [5] Alexander Aue, Gregory Rice, and Ozan Sönmez. Structural break analysis for spectrum
    and trace of covariance operators. Environmetrics, 31(1):e2617, 2020.

    [6] Ivan E Auger and Charles E Lawrence. Algorithms for the optimal identification of
    segment neighborhoods. Bulletin of mathematical biology, 51(1):39–54, 1989.

    [7] István Berkes, Robertas Gabrys, Lajos Horváth, and Piotr Kokoszka. Detecting changes
    in the mean of functional observations. Journal of the Royal Statistical Society: Series B
    (Statistical Methodology), 71(5):927–946, 2009.

    [8] Yu-Ting Chen, Jeng-Min Chiou, and Tzee-Ming Huang. Greedy segmentation for
    a functional data sequence. Journal of the American Statistical Association, DOI:
    10.1080/01621459.2021.1963261, 2021.

    [9] Jeng-Min Chiou, Yu-Ting Chen, and Tailen Hsing. Identifying multiple changes for a
    functional data sequence with application to freeway traffic segmentation. The Annals of
    Applied Statistics, 13(3):1430–1463, 2019.

    [10] Holger Dette and Tim Kutta. Detecting structural breaks in eigensystems of functional
    time series. Electronic Journal of Statistics, 15(1):944–983, 2021.

    [11] Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. The
    Annals of Statistics, 42(6):2243–2281, 2014.

    [12] Abdullah Gedikli, Hafzullah Aksoy, N Erdem Unal, and Athanasios Kehagias. Modified
    dynamic programming approach for offline segmentation of long hydrometeorological
    time series. Stochastic Environmental Research and Risk Assessment, 24(5):547–557,
    2010.

    [13] Oleksandr Gromenko, Piotr Kokoszka, and Matthew Reimherr. Detection of change in the
    spatiotemporal mean function. Journal of the Royal Statistical Society: Series B (Statistical
    Methodology), 79(1):29–50, 2017.

    [14] Zaıd Harchaoui and Céline Lévy-Leduc. Multiple change-point estimation with a total
    variation penalty. Journal of the American Statistical Association, 105(492):1480–1493,
    2010.

    [15] Siegfried Hörmann, Lukasz Kidziński, and Marc Hallin. Dynamic functional principal
    components. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
    77(2):319–348, 2015.

    [16] Siegfried Hörmann and Piotr Kokoszka. Weakly dependent functional data. The Annals
    of Statistics, 38(3):1845–1884, 2010.

    [17] Lajos Horváth, Curtis Miller, and Gregory Rice. A new class of change point test statistics
    of rényi type. Journal of Business & Economic Statistics, 38(3):570–579, 2020.

    [18] Brad Jackson, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter
    Gioumousis, Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and Tun Tao Tsai.
    An algorithm for optimal partitioning of data on an interval. IEEE Signal Processing
    Letters, 12(2):105–108, 2005.

    [19] Daniela Jarušková. Testing for a change in covariance operator. Journal of Statistical
    Planning and Inference, 143(9):1500–1511, 2013.

    [20] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints
    with a linear computational cost. Journal of the American Statistical Association,
    107(500):1590–1598, 2012.

    [21] Robert Maidstone, Toby Hocking, Guillem Rigaill, and Paul Fearnhead. On optimal
    multiple changepoint algorithms for large data. Statistics and Computing, 27(2):519–533,
    2017.

    [22] Adam B Olshen, ES Venkatraman, Robert Lucito, and Michael Wigler. Circular binary
    segmentation for the analysis of arraybased dna copy number data. Biostatistics, 5(4):
    557–572, 2004.

    [23] ES Page. A test for a change in a parameter occurring at an unknown point. Biometrika,
    42(3/4):523–527, 1955.

    [24] David E Parker, Tim P Legg, and Chris K Folland. A new daily central england temperature
    series, 1772–1991. International Journal of Climatology, 12(4):317–342, 1992.

    [25] Olimjon Sh Sharipov and Martin Wendler. Bootstrapping covariance operators of
    functional time series. Journal of Nonparametric Statistics, 32(3):648–666, 2020.

    [26] Ada W van der Vaart and Jon A Wellner. Weak Convergence and Empirical Processes:
    With Applications to Statistics. Springer, NewYork, 1996.

    [27] Tengyao Wang and Richard J Samworth. High dimensional change point estimation
    via sparse projection. Journal of the Royal Statistical Society: Series B (Statistical
    Methodology), 80(1):57–83, 2018.
    描述: 博士
    國立政治大學
    統計學系
    104354501
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104354501
    数据类型: thesis
    DOI: 10.6814/NCCU202200419
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    450101.pdf1032KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈