政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139860
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51759800      線上人數 : 575
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 會議論文 >  Item 140.119/139860
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/139860


    題名: The extension of isometric feature mapping for interval-valued symbolic data
    作者: 吳漢銘
    Wu, Han-Ming
    貢獻者: 統計系
    日期: 2018-08
    上傳時間: 2022-04-12
    摘要: The dimension reduction of the interval-valued data is one of the active research topics in symbolic data analysis (SDA). The main thread has been focused on the extensions of the linear algorithms such as the principal component analysis (PCA) and the sliced inverse regression (SIR). We extend the isometric feature mapping (ISOMAP) to the interval-valued data which we called interval ISOMAP (iISOMAP). ISOMAP is a global geometric framework for nonlinear dimensionality reduction (NLDR) techniques using the shortest-path distance in a neighbor graph. The ISOMAP algorithm advances PCA and the multidimensional scaling (MDS) by providing a better understanding of the data`s intrinsic structure. Applying interval MDS to the estimation of the geodesic distance between interval data points is the key step of the ISOMAP. For the estimation of the geodesic distance between interval type symbolic objects, we compare the various input distance measures proposed previously. The maximum covering area rectangle (MCAR) method is used to display the interval objects onto a 2D NLDR subspace in order to visualize the geometric structure of a nonlinear manifold dataset. We evaluate the method for the low-dimensional discriminative and visualization purposes by means of the simulation studies and real data sets. The comparison with those obtained with the symbolic PCA and the symbolic MDS were also reported.
    關聯: The 23rd International Conference on Computational Statistics, International Statistical Institute
    資料類型: conference
    顯示於類別:[統計學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2159檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋