English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52181461      Online Users : 83
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/139855
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139855


    Title: Logarithmic Confidence Intervals for the Cross-product Ratio of Binomial Proportions under Different Sampling Schemes
    Authors: 楊素芬
    Yang, Su-Fen
    Sungboonchoo, Chanakan
    Panichkitkosolkul, Wararit
    Volodin, Andrei
    Contributors: 統計系
    Keywords: Cross-product ratio;Direct binomial sampling scheme;Inverse binomial sampling scheme;Logarithmic confidence interval;Normal approximation
    Date: 2023-05
    Issue Date: 2022-04-12
    Abstract: We consider the problem of logarithmic interval estimation for a cross-product ratio ρ=p1(1−p2)p2(1−p1) with data from two independent Bernoulli samples. Each sample may be obtained in the framework of direct or inverse Binomial sampling schemes. Asymptotic logarithmic confidence intervals are constructed under different types of sampling schemes, with parameter estimators demonstrating exponentially decreasing bias. Our goal is to investigate the cases when the relatively simple normal approximations for estimators of the cross-product ratio are reliable for constructing logarithmic confidence intervals. We use the closeness of the confidence coefficient to the nominal confidence level as our main evaluation criterion, and use the Monte-Carlo method to investigate the key probability characteristics of intervals corresponding to all possible combinations of sampling schemes. We present estimations of the coverage probability, expectation and standard deviation of interval widths in tables. Also, we provide some recommendations for applying each logarithmic interval obtained.
    Relation: Communications in Statistics - Simulation and Computation, Vol.52, No.6, pp.2686-2704
    Data Type: article
    DOI 連結: https://doi.org/10.1080/03610918.2021.1914090
    DOI: 10.1080/03610918.2021.1914090
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2272View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback