English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51819871      Online Users : 586
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/139851
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139851


    Title: An Item Response Tree Model with Not-All-Distinct End Nodes for Non-Response Modeling
    Authors: 張育瑋
    Chang, Yu-Wei
    Hsu, Nan-Jung
    Tsai, Rung-Ching
    Contributors: 統計系
    Keywords: Laplace-approximated maximum likelihood estimation;item response theory tree model;non-response
    Date: 2021-11
    Issue Date: 2022-04-12
    Abstract: The non-response model in Knott et al. (1991, Statistician, 40, 217) can be represented as a tree model with one branch for response/non-response and another branch for correct/incorrect response, and each branch probability is characterized by an item response theory model. In the model, it is assumed that there is only one source of non-responses. However, in questionnaires or educational tests, non-responses might come from different sources, such as test speededness, inability to answer, lack of motivation, and sensitive questions. To better accommodate such more realistic underlying mechanisms, we propose a a tree model with four end nodes, not all distinct, for non-response modelling. The Laplace-approximated maximum likelihood estimation for the proposed model is suggested. The validation of the proposed estimation procedure and the advantage of the proposed model over traditional methods are demonstrated in simulations. For illustration, the methodologies are applied to data from the 2012 Programme for International Student Assessment (PISA). The analysis shows that the proposed tree model has a better fit to PISA data than other existing models, providing a useful tool to distinguish the sources of non-responses.
    Relation: British Journal of Mathematical and Statistical Psychology, Vol.74, No.3, pp.487-512
    Data Type: article
    DOI 連結: https://doi.org/10.1111/bmsp.12236
    DOI: 10.1111/bmsp.12236
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    40.pdf685KbAdobe PDF2216View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback