政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139838
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52058756      在线人数 : 303
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 專書/專書篇章 >  Item 140.119/139838


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/139838


    题名: Dimension reduction and visualization of symbolic interval-valued data using sliced inverse regression
    作者: 吳漢銘
    Wu, Han-Ming
    Kao, Chiun-How
    Chen, Chun-houh
    贡献者: 統計系
    关键词: data visualization;dimension reduction;distributional approaches;interval-valued data;simulation studies;sliced inverse regression method;symbolic covariance matrix;symbolic-numerical-symbolic approaches
    日期: 2020-01
    上传时间: 2022-04-12
    摘要: Sliced inverse regression (SIR) is a popular slice-based sufficient dimension reduction technique for exploring the intrinsic structure of high-dimensional data. A main goal of dimension reduction is data visualization. This chapter reviews the extension of principal component analysis (PCA) to the interval-valued data, followed by a brief description of the classic SIR. It considers different families of symbolic-numerical-symbolic approaches to extend SIR to the interval-valued data. The chapter evaluates the implemented interval SIR methods and compare the results with those of interval PCA for low-dimensional discriminative and visualization purposes by means of simulation studies. The analysis of interval-valued data usually serves as the basic principle for analyzing other types of symbolic data, such as multi-valued data, modal-valued data, and modal multi-valued data. The advantage of the distributional approaches is that the resulting symbolic covariance matrix fully utilizes all the information in the data.
    關聯: Advances in Data Science: Symbolic, Complex and Network Data, John Wiley & Sons, Inc., pp.49-78
    数据类型: book/chapter
    DOI 連結: https://doi.org/10.1002/9781119695110.ch3
    DOI: 10.1002/9781119695110.ch3
    显示于类别:[統計學系] 專書/專書篇章

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2295检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈