政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/138652
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114105/145137 (79%)
造访人次 : 52173334      在线人数 : 355
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 會議論文 >  Item 140.119/138652


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/138652


    题名: A Markov Chain Model to Analyze the Entry-and-Stay States of Frequent Visitors to Taiwan
    作者: 林逸塵
    Lin, I-Chen
    Hung, Wei-Hsi
    贡献者: 資管博五
    关键词: frequent visitors;transition matrix;Markov chains;Markov process;Datamining
    日期: 2021-08
    上传时间: 2022-01-06
    摘要: A model to predict the immigration behaviors of frequent visitors would help to improve clearance services and resource allocation at a country`s border. This research uses Markov process to analyze the entry-and-stay states of frequent visitors based on their immigration records. Prior studies have lacked quantitative information about the entry and stay states of travelers at the border. In this study, the following attributes were drawn from the immigration records: (1) entry and exit date, (2) entry and exit frequency, and (3) duration of stay. We calculated a transition probability matrix containing all transition probabilities between each entry-and-stay states of visitors. When entry event of a visitor occurs in a certain state, we can estimate the possible state in the next period and the equilibrium probability by using the transition matrix. We determines the transition state of visitors entering Taiwan, and to consider the overall transition probabilities to predict the immigration behaviors. The model results in the steady-state probability. The state S5 (Entering 2 to 8 times and staying 3 to 6 days) has the highest probability of 27.99%. The definition of frequent visitor can be revised by the implication of state S5 to improve future decisions and immigration services based on these results.
    關聯: 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), Yemeni Organization for Science and Technology Research (YOSTR)
    数据类型: conference
    DOI 連結: https://doi.org/10.1109/eSmarTA52612.2021.9515733
    DOI: 10.1109/eSmarTA52612.2021.9515733
    显示于类别:[資訊管理學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    88.pdf3982KbAdobe PDF2322检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈