English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52587127      Online Users : 1013
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/136354
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136354


    Title: 依稀疏迴歸模型檢驗硬情緒:基於指數報酬的可預測性
    In Search of Index Return Predictability: Based On Sparse Predictive Regressions With Hard Information
    Authors: 林彣珊
    Lin, Wen-Shan
    Contributors: 江彌修
    Chiang, Mi-Hsiu
    林彣珊
    Lin, Wen-Shan
    Keywords: 稀疏迴歸模型
    特徵生成
    硬情緒
    Sparse regression model
    Feature generation
    Hard sentiment
    Date: 2021
    Issue Date: 2021-08-04 14:49:46 (UTC+8)
    Abstract: 近年來有許多學者提出投資人情緒對金融市場的趨勢改變有很大的關係,亦透過建構情緒指標來驗證變數情緒討論有助於幫助市場趨勢預測的準確度提升;而金融市場受到各種不同面向的變數影響,也導致市場趨勢預測更加複雜、困難,近年來也有許多文獻討論預測市場趨勢的模型,其中以機器學習訓練模型,能處理巨量的高維度資料,有效解決傳統迴歸模型在變數增加預測能力下降的問題,在預測上有更好的表現。因此本研究以稀疏迴歸模型作為預測模型,透過挑選隱含投資人情緒的硬資訊作為變數討論,來驗證稀疏迴歸規模型有助於篩選資訊,減少模型內變數數量,在多變數的情況下能提升預測準確度;除此之外,亦透過稀疏迴歸模型的懲罰項特性,來探討所萃取出來的特徵是否有一致性,能幫助投資人更準確的掌握隱含情緒異象的硬資訊。
    In recent years, many scholars have pointed out that investor sentiment has a great relationship with changes in financial market trends, and the construction of sentiment indicators to verify variable sentiment discussions can help improve the accuracy of market trend forecasting; financial markets are subject to various aspects. The influence of the variables in the market has also made market trend prediction more complicated and difficult. In recent years, there have been many articles discussing models for predicting market trends. Among them, machine learning training models can handle huge amounts of high-dimensional data, effectively solving the increasing variables of traditional regression models. The problem of declining forecasting ability has better performance in forecasting. Therefore, this study uses a sparse regression model as a predictive model. By selecting hard information that implies investor sentiment as a variable discussion, it is verified that the sparse regression can help filter information and reduce the number of variables in the model and improve the accuracy of prediction. In addition, the penalty feature of the sparse regression model is also used to explore whether the extracted features are consistent, which can help investors more accurately grasp hard information that implies emotional anomalies.
    Reference: [1]Ait-Sahalia, Y., Andritzky, J., Jobst, A., Nowak, S., & Tamirisa, N. (2012). Market response to policy initiatives during the global financial crisis. Journal of International Economics, 87(1), 162-177.
    [2]Bianchi, D., & Tamoni, A. (2020). Sparse predictive regressions: Statistical performance and economic significance. Machine Learning for Asset Management: New Developments and Financial Applications, 75-113.
    [3]Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross­section of stock returns. The journal of Finance, 61(4), 1645-1680.
    [4]Brown, G. W., & Cliff, M. T. (2004). Investor sentiment and the near-term stock market. Journal of empirical finance, 11(1), 1-27.
    [5]Baker, M., & Stein, J. C. (2004). Market liquidity as a sentiment indicator. Journal of Financial Markets, 7(3), 271-299.
    [6]Chen, H., Chong, T. T. L., & She, Y. (2014). A principal component approach to measuring investor sentiment in China. Quantitative Finance, 14(4), 573-579.
    [7]Chun, S. H., & Kim, S. H. (2004). Data mining for financial prediction and trading:Application to single and multiple markets. Expert Systems with Applications, 26(2),131–139.
    [8]Curme, C., Preis, T., Stanley, H. E., & Moat, H. S. (2014). Quantifying the semantics of search behavior before stock market moves. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11600–11605.
    [9]Ding, W., Mazouz, K., & Wang, Q. (2019). Investor sentiment and the cross-section of stock returns: new theory and evidence. Review of Quantitative Finance and Accounting, 53(2), 493-525.
    [10]Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.
    [11]Georgopoulou, A., & Wang, J. (2017). The trend is your friend: Time-series momentum strategies across equity and commodity markets. Review of Finance, 21(4), 1557-1592.
    [12]Hurst, B., Ooi, Y. H., & Pedersen, L. H. (2017). A century of evidence on trend-following investing. The Journal of Portfolio Management, 44(1), 15-29.
    [13]Lam, M. (2004). Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis. Decision Support Systems, 37(4),
    567–581.
    [14]Liu, L., Ma, F., Zeng, Q., & Zhang, Y. (2020). Forecasting the aggregate stock market volatility in a data-rich world. Applied Economics, 1-16.
    [15]Li, X., Ma, J., Wang, S. Y., & Zhang, X. (2015). How does Google search affect trader positions and crude oil prices? Economic Modelling, 49, 162–171.
    [16]Liberti, J. M., & Petersen, M. A. (2019). Information: Hard and soft. Review of Corporate Finance Studies, 8(1), 1-41.
    [17]Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G. (2014). Forecasting the equity risk premium: the role of technical indicators. Management science, 60(7), 1772-1791.
    [18]Orosel, G. O. (1998). Participation costs, trend chasing, and volatility of stock prices. The Review of Financial Studies, 11(3), 521-557.
    [19]Ogutu, J. O., Schulz-Streeck, T., & Piepho, H. P. (2012, December). Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. In BMC proceedings (Vol. 6, No. 2, pp. 1-6). BioMed Central.
    [20]Paye, B. S. (2012). ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables. Journal of Financial Economics, 106(3), 527-546.
    [21]Panagiotidis, T., Stengos, T., & Vravosinos, O. (2020). A principal component-guided sparse regression approach for the determination of bitcoin returns. Journal of Risk and Financial Management, 13(2), 33.
    [22]Sermpinis, G., Tsoukas, S., & Zhang, P. (2018). Modelling market implied ratings using LASSO variable selection techniques. Journal of Empirical Finance, 48, 19-35.
    [23]Wilcoxson, J., Follett, L., & Severe, S. (2020). Forecasting Foreign Exchange Markets Using Google Trends: Prediction Performance of Competing Models. Journal of Behavioral Finance, 1-11.
    [24]Wenjie Ding & Khelifa Mazouz & Qingwei Wang, (2019). "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    [25]Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies, 21(4), 1455-1508.
    [26]Zhang, Y., Ma, F., & Wang, Y. (2019). Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?. Journal of Empirical Finance, 54, 97-117.
    [27]Zweig, M. E. (1973). An investor expectations stock price predictive model using closed-end fund premiums. The Journal of Finance, 28(1), 67-78.
    [28]Zhang, X. Z., Hu, Y., Xie, K., Zhang, W. G., Su, L. J., & Liu, M. (2015). An evolutionary trend reversion model for stock trading rule discovery. Knowledge-Based Systems,79, 27–35.
    Description: 碩士
    國立政治大學
    金融學系
    108352005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108352005
    Data Type: thesis
    DOI: 10.6814/NCCU202100650
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200501.pdf873KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback