政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136320
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51799793      在线人数 : 399
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/136320


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136320


    题名: 應用Conway-Maxwell-Poisson分配預測非契約型顧客之終身價值
    Predicting Customer Lifetime Value for Non-Contractual Relations with Application of Conway-Maxwell-Poisson Distribution
    作者: 陳琬珊
    Chen, Wan-Shan
    贡献者: 陳麗霞
    Chen, Li-Shya
    陳琬珊
    Chen, Wan-Shan
    关键词: 顧客終身價值
    非契約型關係
    過度離散
    不足離散
    Conway-Maxwell-Poisson分配
    Customer lifetime value (CLV)
    Non-contractual relations
    Overdispersion
    Underdispersion
    Conway-Maxwell-Poisson (CMP) distribution
    日期: 2021
    上传时间: 2021-08-04 14:42:22 (UTC+8)
    摘要: 隨著商業競爭加劇,企業不再單純依靠產品本身差異以維持競爭力,進而將焦點轉向個人化之服務,然而在顧客數眾多的情況下,如何評估個別顧客為企業帶來的終身價值 (customer lifetime value, 簡稱CLV或LTV) 已儼然成為重要的課題。若企業可明確知道顧客流失時點則稱為契約型關係 (contractual relations),反之則稱為非契約型關係 (non-contractual relations)。本論文探討的是非契約型關係,考慮顧客在企業中存續時間為不可觀測之下,分別建構交易次數與顧客存續時間模型及交易金額模型之後,再依據CLV的計算公式,以預測個別顧客的CLV。不少實證研究顯示,交易次數相較於卜瓦松分配有過度離散 (overdispersion) 或不足離散 (underdispersion) 的現象,本論文乃延續 Mzoughia et al. (2018) 的做法,以Conway-Maxwell-Poisson (CMP) 分配為交易次數之分配,但修正Mzoughia et al. (2018) 的公式,納入顧客間交易次數離散現象之異質性,並進一步推導及計算出兩種CLV估計值,可分別評估顧客未來於一定期間內及至其流失為止的價值。
    As business competition intensifies, companies no longer rely solely on the superior products to maintain their competitive edge. Instead, they turn their focuses to personalized services. When having thousands of customers, how to evaluate individual customer’s customer lifetime value (CLV or LTV) is undoubtedly a significant issue. If a company can observe exactly the time of customer dropout, then it belongs to “contractual relations”. Otherwise, it belongs to “non-contractual relations”. This thesis discusses the non-contractual relationship. Considering that the customer`s lifetime in the business is unobservable, models for the number of transactions, the customer’s lifetime and the transaction amount are constructed separately, and then the CLV formula is applied to predict the CLV of each individual customer. Several empirical studies have already shown that the numbers of transactions are sometimes being overdispersion or underdispersion compared to Poisson distribution. This thesis continues the work of Mzoughia et al. (2018) and constructs the model of number of transactions by Conway-Maxwell-Poisson (CMP) distribution, but modifies the formula of Mzoughia et al. (2018), and considers heterogeneous dispersion of the number of transactions among customers. Moreover, we derive and compute two CLV estimates, which can be used to evaluate each individual customer’s future value within a certain period and until customer dropout.
    參考文獻: Abe, M. (2009). "Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model. Marketing Science, 28(3), 541-553. https://doi.org/10.1287/mksc.1090.0502
    Berger, P. D., and Nasr, N. I. (1998). Customer Lifetime Value: Marketing Models and Applications [Article]. Journal of Interactive Marketing, 12(1), 17-30. https://doi.org/10.1002/(SICI)1520-6653(199824)12:1<17::AID-DIR3>3.0.CO;2-K
    Bernat, J. R. (2019). Modelling Customer Lifetime Value in a Continuous, Non-Contractual Time Setting. [Master Thesis, Erasmus University]. http://hdl.handle.net/2105/45923
    Brockett, P. L., Golden, L. L., and Panjer, H. L. (1996) Flexible Purchase Frequency Modeling. Journal of Marketing Research, 33(1), 94–107.
    Borle, S., Singh, S. S., and Jain, D. C. (2008). Customer Lifetime Value Measurement [Article]. Management Science, 54(1), 100-112. https://doi.org/10.1287/mnsc.1070.0746
    Colombo, R., and Jiang, W. (1999). A Stochastic RFM Model. Journal of Interactive Marketing, 13(3), 2-12. https://doi.org/10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H
    Consul, P. C. (1989). Generalized Poisson Distributions: Properties and Applications. New York: M. Dekker.
    Conway, R. W. and Maxwell, W. L. (1962). A Queuing Model with State Dependent Service Rates, Journal of Industrial Engineering, 12, 132-136.
    Dziurzynski, L., and Wadsworth, E. (2020). BTYD: Implementing BTYD Models with the Log Sum Exp Patch. R package version 2.4.2.
    EsmaeiliGookeh, M., and Tarokh, M. J. (2013). Customer Lifetime Value Models: A Literature Survey. International Journal of Industrial Engineering & Production Research, 24(4), 317-336. http://ijiepr.iust.ac.ir/article-1-509-en.html
    Fader, P. S., and Hardie, B. G. S. (2001). Forecasting Repeat Sales at CDNOW: A Case Study. INFORMS Journal on Applied Analytics 31 (3_supplement) S94-S107. https://doi.org/10.1287/inte.31.3s.94.9683
    Fader, P. S., and Hardie, B. G. S. (2009). Probability Models for Customer-Base Analysis. Journal of Interactive Marketing, 23(1), 61-69. https://doi.org/10.1016/j.intmar.2008.11.003
    Fader, P. S., and Hardie, B. G. S. (2013a). The Gamma-Gamma Model of Monetary. http://brucehardie.com/notes/025/
    Fader, P. S., and Hardie, B. G. S. (2013b). A Note on the CDNOW Master Data Set. http://www.brucehardie.com/notes/026/
    Fader, P. S., and Hardie, B. G. S. (2014). What’s Wrong with This CLV Formula? http://brucehardie.com/notes/033/
    Fader, P. S., Hardie, B. G. S., and Lee, K. L. (2005a). &quot;Counting Your Customers&quot; the Easy Way: An Alternative to the Pareto/NBD Model. Marketing Science, 24(2), 275-284. https://doi.org/10.1287/mksc.1040.0098
    Fader, P. S., Hardie, B. G. S., and Lee, K. L. (2005b). RFM and CLV: Using Iso-Value Curves for Customer Base Analysis. Journal of Marketing Research, 42(4), 415-430. https://doi.org/10.1509/jmkr.2005.42.4.415
    Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b16018
    Guo, J., Gabry, J., Goodrich, B., and Weber, S. (2020). rstan: R Interface to Stan. R package version 2.21.2.
    Jain, D., and Singh, S. S. (2002). Customer Lifetime Value Research in Marketing: A Review and Future Directions [Article]. Journal of Interactive Marketing, 16(2), 34-46. https://doi.org/10.1002/dir.10032
    Kotler, P., and Armstrong, G. (1996). Principles of Marketing (7th ed.). Prentice-Hall, Englewood Cliffs.
    Kumar V., and Reinartz, W. (2018). Customer Relationship Management (3rd ed.). Springer-Verlag Berlin Heidelberg.
    Minka, T. P., Shmeuli, G., Kadane, J. B., Borle, S., and Boatwright, P. (2018). Computing with the COM-Poisson Distribution. Carnegie Mellon University. Journal contribution. https://doi.org/10.1184/R1/6586508.v1
    Mzoughia, M. B., Borle, S., and Limam, M. (2018). A MCMC Approach for Modeling Customer Lifetime Behavior Using the COM-Poisson Distribution [Article]. Applied Stochastic Models in Business and Industry, 34(2), 113-127. https://doi.org/10.1002/asmb.2276
    Mzoughia, M. B., and Limam, M. (2014). An Improved BG/NBD Approach for Modeling Purchasing Behavior Using COM-Poisson Distribution. International Journal of Modeling and Optimization, 4(2), 141-145. https://doi.org/10.7763/IJMO.2014.V4.362
    Platzer, M. (2021). BTYDplus: Probabilistic Models for Assessing and Predicting Your Customer Base. R package version 1.2.0.
    Pfeifer, P. E., Haskins, M. E., and Conroy, R. M. (2005). Customer Lifetime Value, Customer Profitability, and the Treatment of Acquisition Spending [Article]. Journal of Managerial Issues, 17(1), 11-25. https://www.scopus.com/inward/record.uri?eid=2-s2.0-28444488787&partnerID=40&md5=98858b4efd66a0815a0de6cbce1dc71b
    Rosset, S., Neumann, E., Eick, U., and Vatnik, N. (2003). Customer Lifetime Value Models for Decision Support. Data Mining and Knowledge Discovery, 7(3), 321-339. https://doi.org/10.1023/A:1024036305874
    Schmittlein, D. C., and Peterson, R. A. (1994). Customer Base Analysis: An Industrial Purchase Process Application. Marketing Science, 13(1), 41-67. http://www.jstor.org/stable/183755
    Schmittlein, D. C., Morrison, D. G., and Colombo, R. (1987). Counting Your Customers - Who Are They and What Will They Do Next. Management Science, 33(1), 1-24. https://doi.org/10.1287/mnsc.33.1.1
    Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., and Boatwright, P. (2005). A Useful Distribution for Fitting Discrete Data: Revival of the Conway-Maxwell-Poisson Distribution [Article]. Journal of the Royal Statistical Society. Series C: Applied Statistics, 54(1), 127-142. https://doi.org/10.1111/j.1467-9876.2005.00474.x
    Singh, S. S., Borle, S., and Jain, D. C. (2009). A Generalized Framework for Estimating Customer Lifetime Value When Customer Lifetimes Are Not Observed [Article]. Quantitative Marketing and Economics, 7(2), 181-205. https://doi.org/10.1007/s11129-009-9065-0
    Thomas, J. S. (1997). Customer Equity: Managing the Customer-Firm Relationship. [Doctor Dissertation, Kellogg School of Management, Northwestern University].
    Xie, S.-M. (2020). Comparative Models in Customer Base Analysis: Parametric Model and Observation-Driven Model. Journal of Business Economics and Management, 21(6), 1731-1751. https://doi.org/10.3846/jbem.2020.13194
    Zhu, L., Sellers, K. F., Morris, D. S., and Shmueli, G. (2017). Bridging the Gap: A Generalized Stochastic Process for Count Data [Article]. American Statistician, 71(1), 71-80. https://doi.org/10.1080/00031305.2016.1234976
    描述: 碩士
    國立政治大學
    統計學系
    108354016
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108354016
    数据类型: thesis
    DOI: 10.6814/NCCU202101152
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    401601.pdf4051KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈