English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51733985      Online Users : 567
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/136319
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136319


    Title: 睡眠呼吸中止症(OSA)病患中具低覺醒閾值與高覺醒閾值病人的配適模型,與其對應的重要變數
    Authors: 王揆庭
    Wang, Kuei-Ting
    Contributors: 楊素芬
    蕭又新

    Yang, Su-Fen
    Shiau, Yuo-Hsien

    王揆庭
    Wang, Kuei-Ting
    Keywords: 睡眠呼吸中止症
    低覺醒閾值
    身體組成分析
    預測模型
    Date: 2021
    Issue Date: 2021-08-04 14:42:10 (UTC+8)
    Abstract: 阻塞型睡眠呼吸中止症(OSA)的部分病患中,因為患有低覺醒閾值,容易在睡眠之中醒過來,對於OSA現行治療方式,Edward等人(2014)指出,配戴持續性正壓呼吸器對於低覺醒患者的依從性低,需另尋其他治療方式。Edward等人(2014)發展一套對於高和低覺醒閾值的病患分類的評分法,其所需的三項評分指標需經多項睡眠生理檢查取得之,但成本高。
    本研究建立一套預測模型以區分高和低覺醒閾值病患,並找出對分類貢獻度高的重要變數。數據來自雙和醫院睡眠中心的PSG資料庫,包含2270位呼吸中止症病患接受多項睡眠生理檢查與睡眠前、後的身體組成變數資料。採用 Edward等人(2014)的評分法將所有病患分類後,得每一位病患是否為低覺醒閾值的標籤做為應變數,並對病患的體型特徵分組後對其在睡眠前、後檢測的身體組成變數結合打鼾指標和平均心率等作為自變數並執行主成分分析。接著,選用 Logistic regression、Neural network、Random forest與Support vector machine等方法以訓練集配適模型,並比較不同模型的訓練集和測試集的準確率。結果顯示,男性樣本根據Logistic regression或是Neural network模型在每一組建立的不同模型中表現的預測準確率與交叉驗證後的平均預測準確率較佳,女性樣本則是SVM模型預測比現較佳。接著透過模型內找出重要自變數,並觀察在高和低覺醒閾值之下的差異與表現。
    Reference: 周坤達、吳紹豪、蕭光明 (2012)。簡介阻塞型睡眠呼吸中止症。台北市醫師公會會刊,第56卷,第10期。
    法務部 (2019)。人體研究法,全國法規資料庫
    陳承昌(2006)。支持向量機及Plausible Neural Network於水稻田辨識之研究。國立交通大學土木工程研究所論文
    陳時仲(2015)。隨機森林模型效力評估。國立交通大學統計研究所論文
    衛生福利部國民健康署 (2020)。成人健康體位標準,載於: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=9737
    鐘威昇、侯承伯 (2013)。阻塞性呼吸中止症候群。家庭醫學與基層醫療,第28卷,第6期。

    英文部份
    Ben-Hur, A., Horn, D., Siegelmann, H.T., & Vapnik, V. (2001) Support vector clustering. Journal of Machine Learning Research, 125–137.
    Bradley, T. D., & Floras, J. S. (2009). Obstructive sleep apnea and its cardiovascular consequences. Lancet, 373(9657), 82–93.
    Breiman, L. (2001) Random Forests. Machine Learning 45, 5–32.
    Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression Trees (1st ed.). Routledge.
    Cortes, C., Vapnik, V. (1995). Support-vector networks., Mach Learn 20, 273–297.
    Dinges, D. F., Weaver, T. E. (2003). Effects of modafinil on sustained attention performance and quality of life in OSA patients with residual sleepiness while being treated with nCPAP. Sleep Medicine, Volume 4, Issue 5, 1389-9457.
    Eckert, D. J., Owens, R. L., Kehlmann, G. B., Wellman, A., Rahangdale, S., Yim-Yeh, S., White, D. P., & Malhotra, A. (2011). Eszopiclone increases the respiratory arousal threshold and lowers the apnea/hypopnea index in obstructive sleep apnea patients with a low arousal threshold. Clinical science, 120(12), 505–514.
    Eckert, D. J., Owens, R. L., Kehlmann, G. B., Wellman, A., Rahangdale, S., Yim-Yeh, S., White, D. P., & Malhotra, A. (2011). Eszopiclone increases the respiratory arousal threshold and lowers the apnoea/hypopnoea index in obstructive sleep apnoea patients with a low arousal threshold. Clinical science, 120(12), 505–514.
    Eckert, D. J., White, D. P., Jordan, A. S., Malhotra, A., & Wellman, A. (2013). Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. American journal of respiratory and critical care medicine, 188(8), 996–1004.
    Edwards, B. A., Eckert, D. J., McSharry, D. G., Sands, S. A., Desai, A., Kehlmann, G., Bakker, J. P., Genta, P. R., Owens, R. L., White, D. P., Wellman, A., & Malhotra, A. (2014). Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. American journal of respiratory and critical care medicine, 190(11), 1293–1300.
    Franklin, K. A., & Lindberg, E. (2015). Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. Journal of thoracic disease, 7(8), 1311–1322.
    Geraldine M. N., Liam S. D., Walter T. N. (2007) Auto-Adjusting Versus Fixed Positive Pressure Therapy in Mild to Moderate Obstructive Sleep Apnoea, Sleep, Volume 30, Issue 2, 189-194
    Glass, G. V. (1965). A ranking variable analogue of biserial correlation: Implications for short-cut item analysis. Journal of Educational Measurement, 2(1), 91–95.
    Gray, E. L., McKenzie, D. K., & Eckert, D. J. (2017). Obstructive Sleep Apnea without Obesity Is Common and Difficult to Treat: Evidence for a Distinct Pathophysiological Phenotype. Journal of clinical sleep medicine, 13(1), 81–88.
    Hang, LW., Huang, CS. & Cheng, WJ. (2020). Clinical characteristics of Asian patients with sleep apnea with low arousal threshold and sleep structure change with continuous positive airway pressure. Sleep Breath.
    Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural networks, 2, 41.
    Hosmer, D. W., Lemeshow, S. (2013) Applied Logistic Regression Second Edition. New York : John Wiley & Sons, Inc.
    Hung YC. (2020). Support vector classification. National Chengchi University Department of Statistics
    Kingma, D and Ba, J . (2015) Adam: A method for Stochastic Optimization.
    Lee, R., Sutherland, K., Sands, S. A., Edwards, B. A., Chan, T. O., Susana, S. S. NG., Hui, D. S., & Cistulli, P. A. (2017). Differences in respiratory arousal threshold in Caucasian and Chinese patients with obstructive sleep apnoea. Respirology, 22(5), 1015–1021.
    Li, K. K., Kushida, C., Powell, N. B., Riley, R. W., & Guilleminault, C. (2000). Obstructive sleep apnea syndrome: a comparison between Far-East Asian and white men. The Laryngoscope, 110.
    Liu, D., Myles, H., Foley, D. L., Watts, G. F., Morgan, V. A., Castle, D., Waterreus, A., Mackinnon, A., & Galletly, C. A. (2016). Risk Factors for Obstructive Sleep Apnea Are Prevalent in People with Psychosis and Correlate with Impaired Social Functioning and Poor Physical Health. Frontiers in psychiatry, 7, 139.
    Mansukhani, M.P., Kolla, B P., Olson, E. J., Ramar K., & Morgenthaler, T. I. (2014) Bilevel positive airway pressure for obstructive sleep apnea, Expert Review of Medical Devices, 283-294
    Moghalu, O., Whitesell, P., & Kwagyan, J. (2020) Low Respiratory Arousal Threshold (LRAT) in African Americans with Obstructive Sleep Apnea (OSA). (2740) Neurology, 94.
    Pavwoski, P., Shelgikar, A. V. (2017). Treatment options for obstructive sleep apnea, Neurol Clinical Practice, 7(1) 77-85.
    Pratt J.W., Gibbons J.D. (1981) Kolmogorov-Smirnov Two-Sample Tests. In: Concepts of Nonparametric Theory. Springer Series in Statistics. Springer, New York
    Zinchuk, A., Edwards, B. A., Jeon, S., Koo, B. B., Concato, J., Sands, S., Wellman, A., & Yaggi, H. K. (2018). Prevalence, Associated Clinical Features, and Impact on Continuous Positive Airway Pressure Use of a Low Respiratory Arousal Threshold Among Male United States Veterans With Obstructive Sleep Apnea. Journal of clinical sleep medicine, 14(5), 809–817.
    Description: 碩士
    國立政治大學
    統計學系
    108354014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108354014
    Data Type: thesis
    DOI: 10.6814/NCCU202101064
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401401.pdf4301KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback