Reference: | [1] Alt, F. B. (1985). Multivariate quality control. The Encyclopedia of Statistical Sciences, 110-122. [2] Aparisi, F., Epprecht, E. K., & Ruiz, O. (2012). T2 control chart with variable dimension. Journal of Quality Technology, 44(4), 375-393. [3] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538. [4] Chaven, A. R., & Shirke, D. T. (2020). Nonparametric two sample tests for scale parameters of multivariate distributions. Communications for Statistical Applications and Methods, 27(4), 397-412. [5] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459. [6] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303. [7] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), 268-282. [8] Epprecht, E. K., Aparisi, F., Ruiz, O., & Veiga, A. (2013). Reducing sampling costs in multivariate SPC with a double-dimension T2 control chart. International Journal of Production Economics, 144(1), 90-104. [9] Farokhnia, M., & Niaki, S. T. A. (2019). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 1-24. [10] Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75. [11] Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate exponentially weighted moving covariance matrix. Technometrics, 50, 155-166. [12] Hotelling, H. A. R. O. L. D. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York. [13] Huwang, L., Lin, L. W., & Yu, C. T. (2019). A spatial rank-based multivariate EWMA chart for monitoring process shape matrices. Quality and Reliability Engineering International, 1-19. [14] Huwang, L., Lin, P. C., Chang, C. H., Lin, L. W., & Tee, Y. S. (2017). An EWMA chart for monitoring the covariance matrix of a multivariate process based on dissimilarity index. Quality and Reliability Engineering International, 33, 2089-2104. [15] Huwang, L., Yeh, A. B., & Wu, C. V. (2007). Monitoring multivariate process variability for individual observations. Journal of Quality Technology, 39, 258-278. [16] Kim, J., Abdella, G. M., Kim, S., Al-Khalifa, K. N., & Hamouda, A. M. (2019). Control charts for variability monitoring in high-dimensional processes. Computers & Industrial Engineering, 130, 309-316. [17] Li, B., Wang, K., & Yeh, A. B. (2013). Monitoring the covariance matrix via penalized likelihood estimation. IIE Transactions, 45, 132-146. [18] Li, Z., Zou, C., Wang, Z. and Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165. [19] Liang, W., Xiang, D., Pu, X., Li, Y., & Jin, L. (2019). A robust multivariate sign control chart for detecting shifts in covariance matrix under the elliptical directions distributions, Quality Technology & Quantitative Management, 16(1), 113-127. [20] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387. [21] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. HE transactions, 27(6), 800-810. [22] Luca Scrucca. (2021). Package ‘GA’. Retrieved June 9, 2021, from https://cran.r-project.org/web/packages/GA/GA.pdf [23] MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414. [24] McCann M., & Johnston A. (2008). SECOM Data Set Center for Machine Learning and Intelligent Systems. Irvine, CA: University of California. Retrieved June 9, 2021, from https://archive.ics.uci.edu/ml/datasets.php [25] Melo, M. S., Ho, L. L., & Medeiros, P. G. (2017). M a x D: an attribute control chart to monitor a bivariate process mean. The International Journal of advanced Manufacturing Technology. 90, 489-498. [26] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Washington, D. C (pp. 427-435). [27] Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), 664-677. [28] Reynold, M. R., Jr., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). X ̅ charts with variable sampling intervals. Technometrics, 30(2), 181-192. [29] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250. [30] Wang, S. & Reynolds, M. R. (2013). A GLR Control Chart for Monitoring the Mean Vector of a Multivariate Normal Process. Journal of Quality Technology, 45(1), 18-33. [31] Shen, X., Tsung, F., & Zou, C. (2014). A new multivariate EWMA scheme for monitoring covariance matrices. International Journal of Production Research, 52, 2834-2850. [32] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87. [33] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A phase Ⅱ depth-based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 1-15. [34] Yeh, A. B., Huwang, L., & Wu, Y. F. (2004). A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes. IIE Transactions, 36(9), 865-879. [35] Yeh, A. B., Li, B., & Wang, K. (2012). Monitoring multivariate process variability with individual observations via penalized likelihood estimation. International Journal of Production Research, 50, 6624-6638. [36] Yen, C. L., & Shiau, J. J. H. (2010). A multivariate control chart for detecting increases in process dispersion. Statistica Sinica, 20, 1683-1707. [37] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), 84-97. |