政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/135930
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51940848      線上人數 : 603
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/135930
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/135930


    題名: 基於類別異質性結構的監督式學習
    Supervised Learning with Potential Label Heterogeneity
    作者: 黃俊嘉
    Huang, Jiun-Jia
    貢獻者: 周珮婷
    黃俊嘉
    Huang, Jiun-Jia
    關鍵詞: 潛在類別
    異質性
    分類預測
    Potential categories
    Heterogeneity
    Classification prediction
    日期: 2021
    上傳時間: 2021-07-01 17:30:54 (UTC+8)
    摘要: 在過往的研究中,研究人員常常將研究重心放在找出資料的潛在類別,並透過資料的異質性結構定義出新類別,於是本研究提出基於同類別的異質性結構將各個原始類別拆成數個子類別以提高分類預測準確率。本研究以建立標籤內嵌樹的方法進行分類預測,此分類預測方法是先計算類別支配矩陣後,藉由此矩陣進行階層式分群,並由偽概似機率進行分類預測,而本研究比較使用此方法和常見分類器的分類預測表現差異,也比較常見分類器在使用子類別及原始類別的分類預測差異。研究結果顯示所提出的子類別方法,在異質性資料確實會擁有較高的預測正確率。另外,本研究發現在多數的分類器,以子類別預測能提升分類表現,但是需要考慮資料本身是否含有異質性結構。
    In previous studies, researchers often focused their research on identifying potential categories of data and defining new categories through the heterogeneous structure of the data. Therefore, in this study, the original categories were divided into sub-categories based on the heterogeneous structure of the same category. Each sub-category is then classified and predicted by the method used in this study. This classification prediction method calculates the label dominance matrix, uses the matrix to group hierarchically, and uses the pseudo-likelihood probability to perform classification prediction. This research will compare the prediction accuracy rates of the common classifiers that use the original categories for classification prediction and this proposed method that uses the subcategories. The research results show that this proposed method will indeed have better results in some datasets. In addition, this study also compared whether the classification prediction using the split into sub-categories and the classification prediction using the original category will increase the accuracy of the prediction of various classifiers. It turns out that most of the classifiers have an improvement. Nevertheless, we need to consider if a heterogeneous structure exists in a category first before applying the proposed method.
    參考文獻: 王郁琮. (2014). 台灣青少年異質性憂鬱發展軌跡之性別差異及與違常行為之關係. 中華心理衛生學刊, 27(1), 97-130.

    尹霞雲、朱翠英、黎志華、蔡泰生. (2014). 留守兒童情緒和行為問題特徵的潛在類別分析:基於個體為中心的研究視角. 心理科學, 37(2), 329-334.

    陳杏佳. (2005). 精神分裂症住院病患攻擊行為之異質性與危險因子研究. 臺灣大學護理學研究所學位論文, 1-181.

    Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: Aunifying approach for margin classifiers. Journal of machine learning research, 1(Dec), 113-141.

    Allsopp, K., Read, J., Corcoran, R., & Kinderman, P. (2019). Heterogeneity in psychiatric diagnostic classification. Psychiatry research, 279, 15-22.

    Blanco-Calvo, M., Concha, Á., Figueroa, A., Garrido, F., & Valladares-Ayerbes, M. (2015). Colorectal cancer classification and cell heterogeneity: a systems oncology approach. International journal of molecular sciences, 16(6), 13610-13632.

    Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27.

    Dahl, K. H., Simonsen, G. S., Olsvik, Ø., & Sundsfjord, A. (1999). Heterogeneity in
    the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrobial agents and chemotherapy, 43(5), 1105-1110.

    Farmer, A. E., McGuffin, P., & Spitznagel, E. L. (1983). Heterogeneity in schizophrenia: a cluster-analytic approach. Psychiatry Research, 8(1), 1-12.

    Fitzpatrick, A. M., Teague, W. G., Meyers, D. A., Peters, S. P., Li, X., Li, H., ... & National Institutes of Health. (2011). Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. Journal of allergy and clinical immunology, 127(2), 382-389.

    Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. Paper presented at the Advances in neural information processing systems.

    Hsieh, F., & Chou, E. P. (2021). Categorical Exploratory Data Analysis: From Multiclass Classification and Response Manifold Analytics Perspectives of Baseball Pitching Dynamics. Entropy, 23(7), 792.

    Krzanowski, W. J., & Lai, Y. T. (1988). A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 23-34.

    Krijthe, J.H. & Loog, M. (2015). Implicitly Constrained Semi-Supervised Least Squares Classification. In E. Fromont, T. de Bie, & M. van Leeuwen, eds. 14th International Symposium on Advances in Intelligent Data Analysis XIV (Lecture Notes in Computer Science Volume 9385). Saint Etienne. France, pp. 158-169.

    Lanza, S. T., & Rhoades, B. L. (2013). Latent class analysis: an alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 14(2), 157-168.

    Leisch F, Dimitriadou E (2021). mlbench: Machine Learning Benchmark Problems. R package version 2.1-3.

    MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).

    Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159-179.

    Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of machine learning research, 5(Jan), 101-141.

    Reser, M. P., Allott, K. A., Killackey, E., Farhall, J., & Cotton, S. M. (2015). Exploring cognitive heterogeneity in first-episode psychosis: What cluster analysis can reveal. Psychiatry Research, 229(3), 819-827.

    Shaw, S. Y., Shah, L., Jolly, A. M., & Wylie, J. L. (2008). Identifying heterogeneity among injection drug users: a cluster analysis approach. American Journal of Public Health, 98(8), 1430-1437.

    Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.

    Wanberg, C. R., & Marchese, M. C. (1994). Heterogeneity in the Unemployment Experience: A Cluster Analytic Investigation 1. Journal of Applied Social Psychology, 24(6), 473-488.
    描述: 碩士
    國立政治大學
    統計學系
    108354013
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108354013
    資料類型: thesis
    DOI: 10.6814/NCCU202100555
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    401301.pdf1934KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋